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Abstract—Understanding the effects of having automated vehi-
cles in the future traffic scenarios is an important research topic
that attracts a great deal of attention currently. The difficulty in
studying this problem is the fact that real life measurement and
testing of these scenarios can not be made as there are still a very
small fraction of automated vehicles in the traffic. So analyzing
and understanding the effects of mixed traffic requires extensive
simulative analysis. In this paper we analyze this problem using
real traffic data in combination with the open-source SUMO
traffic simulation software. The traffic flow is modeled based
on the measurement data from a section of the Austrian A2
motorway, while the effects of automated vehicles at various
penetration rates is simulated and consequently some observation
are made.

Index Terms—Automated Vehicles, Mixed Traffic Flows, Traf-
fic Management, Traffic Simulation, SUMO.

I. INTRODUCTION

One of the biggest challenges in today’s automotive research
is automated driving. Nowadays, prototypes of automated
vehicles (AVs) with advanced sensing technologies and in-
telligent control functions are being tested on public roads.
Also all major OEMs are investing heavily on, and are already
offering vehicles with, advanced driver assistance systems
(ADAS) in their product lines that will eventually lead to
AV functionalities. Therefore, it is a widely accepted fact that
in the near future, AVs have to operate with conventional
vehicles in the so-called mixed traffic. From the perspective of
traffic management, it is important to understand the potential
problems with such mixed traffic, particularly the capacity
change as a result of introducing AVs at different penetration
rates.

Much research has been dedicated to impact assessment
of adaptive cruise control (ACC) systems on traffic flow
efficiency, particularly focusing on the network capacity. It
is widely recognized that increasing the penetration rate of
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the vehicles equipped with ACC does not necessarily lead
to significant traffic capacity improvements, and in certain
situations (e.g. with large time headway) it can even worsen
the network capacity. To achieve capacity benefits, the time
headway settings must not be too conservative [1], [2]. Davis
analyzed the effect of adaptive cruise control in mixed traffic
near on-ramps. He proposed a cooperative merging for ACC
vehicles and stated that under a moderate on-ramp traffic flow,
mixed traffic with 50% ACC compared to the flow of all
conventional vehicles can produce 20% improvement in the
throughput [3]. Furthermore, Shladover et al. extended ACC
into Cooperative Adaptive Cruise Control (CACC), where they
examined the implications of varying market penetration rate
of ACC/CACC on freeway capacity through micro-simulation.
They claimed that application of ACC has a little effect
on freeway lane capacity, while CACC can substantially
increase the capacity at a moderate to high CACC market
penetration [4]. To model more realistic automated driving
functionalities, Kerschbaumer et al. developed a longitudinal
and lateral controller for automated driving and coupled them
with VISSIM [5], [6]. Based on this, the effects of automated
driving functions on the traffic flow of the Austrian motorway
network were investigated . The different simulation scenarios
showed that the higher level of automation and penetration rate
of AVs bring bigger positive effects on traffic capacity [7], [8],
which contradicts the observations in this work. The target in
several other studies was also to evaluate whether (connected)
AVs or even autonomous vehicles have positive impacts on
the road infrastructure capacity [9], [10], [11], [12].

To the best of our knowledge, in most of the relevant
research work in this field, the modeling of conventional
vehicle flow was not derived from real traffic flow data,
which leads to a lack of reality. While lane-change and cut-in
behavior is frequently observed near on-ramps and off-ramps
in real traffic, the lane change behavior of manual driven (i.e.,



conventional) and automated vehicles was not treated with
high importance in the existing literature. In this paper we
tackle both of this problems using real traffic measurement
data and also taking into account the lane change behavior
analysis in modeling the traffic flow.

The tool SUMO (Simulation of Urban MObility) was opted
for the microscopic traffic simulation. It is an open source,
multi-modal traffic simulation package that can reproduce
realistic traffic flow models in simulation scenarios [13].
It provides high flexibility for modeling conventional and
automated driving in any traffic scenario and is also convenient
for further investigating the control measures for the traffic
scenario at hand.

Main contributions of this work are:

« Calibration and validation of traffic flow model in SUMO
from the statistical viewpoint, based on real traffic mea-
surements;

 Tuning of the traffic flow model for lane-change behavior
of conventional vehicles and specification of AV’s lane
change mode;

o Impact analysis of different penetration rates of AVs on
the road capacity using the realistic traffic flow model,
which indicated that the more conservative time headway
of AVs compared to human drivers is the main cause of
capacity reduction.

This paper is structured as follows: first the traffic measure-
ment data from an Austrian test site is described in Section
II. Then in Section III, the setup and tuning of the traffic flow
model in the SUMO open-source traffic simulator is explained.
Again in Section IV, SUMO based automated vehicle models
used in the mixed flow analysis with various penetration rates
is described. Finally, the analysis results are presented in
Section V and consequently, the main observations are stated
in Section VL.

II. ROAD MEASUREMENT DATA FROM THE AUSTRIAN
TEST SITE

A per vehicle data was collected at two kilometric points
(169,897; 172,275) separated by 2,378 meters on the Austrian
three-lane motorway A2 “Siid Autobahn” in the direction from
Vienna heading to Klagenfurt nearby Graz, as illustrated in
Fig. 1.
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Fig. 1. The investigated motorway segment with gantry location indications.

Each sensing point contains a per lane information
measured between November the 2%, and December the 27¢
of the year 2018 by the Austrian toll operator ASFINAG.
The measurement includes data from a total of 31 days,
during which the speed limit in the measurement region was

reduced to 100 km/h due to compliance with pollution control
restrictions. In the provided data set, per vehicle information
includes the following variables among others:

o Entry timestamp (the time at which the vehicle reached
the sensor in milliseconds);

« Vehicle type (passenger vehicle, motorcycle, truck, trailer,
etc.);

o Speed (vehicle velocity in kilometers per hour);

o Vehicle length (in decimeters);

e Occupancy (the time the sensors was covered by the
vehicle in milliseconds);

o Net time gap (the time gap in between two successive
vehicles in milliseconds).

The traffic spatial density “ps” was then -calculated
using the occupancy information, where the percentage of
the occupied time “O” from the total evaluated period is
regulating “pynaq” that is the bumper to bumper density
using the following relationship

NT) 0
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where “N(T)” denotes the total number of vehicles passing
at a period of time “T”, “l,,” indicates the length of the n'"
vehicle passing at the same period, and “L” is the resulting
mean length.

This calculation method serves only as a punctual estimation
of the spatial density at each sensing point as it is bound to
the assumption of a constant velocity of the vehicles during
the averaging process [14].

III. FLOW MODELING BASED ON SUMO

In order to ensure a high level of resemblance between
the real traffic measurement data and the simulated traffic
model, we utilize an optimization process that enables the
parametrization of the SUMO car-following and lane-changing
models. The process is based on the “San Pablo Dam”
calibration approach [15], where vehicles are calibrated by
comparing their simulation travel time to the real one. This
approach was previously used to calibrate the car-following
model alone in the existing literature, while it is adapted in
this study to also include the lane changing behavior in the
tuning process. This optimization task was achieved through
the work-flow diagram illustrated in Fig. 2.

This process can be divided into two major steps. The first
step aims to set the simulation environment (primary setup)
and initial conditions based on the traffic characteristics and
statistical analyses of the information provided by ASFINAG
through the system mentioned in Section II. Then in the second
step, the focus is on the calibration and validation of the most
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Fig. 2. Calibration/Validation work-flow.

influencing parameters of the driver models in the SUMO
traffic simulator.

A. Traffic characteristics

During the whole recording period, a total of 857,747
vehicles passed through the first sensing point. This traffic flow
is composed of different vehicle types illustrated in Fig. 3.
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Fig. 3. Traffic composition based on the recorded traffic data.

As it is appropriate to mention here that the data aggregates
contain a more detailed classification where the trucks class
covers all of delivery vans, buses, cars with trailers and two
axle trucks. Also trailers class contain lorries and articulated
vehicles (vehicles with more than three axles). These different
vehicle types behave in dissimilar manners and as a result,
the related vehicular flows must be converted to passenger car
equivalent (PCE) rates where the Highway Capacity Manual

(HCM) was used as a reference to adjust the flow character-
istics. Level of Service (LOS) thresholds were also applied
to regulate the studied road segments by a density measure.
These levels describe the quality of service under which this
road segment operates by evaluating the inter-vehicle distances
and how they vary, thereby quantifying how dense the traffic is.
This also enables an evaluation of the freedom of maneuver
and the respective levels of comfort the drivers experience
within this traffic stream [16].

Considering the calculated adjusted flow rates per hour per
lane and their respective occupancy-based densities, a primary
analysis was performed to locate the most critical conditions
and the traffic characteristic they happened within. It is impor-
tant to mention that the measurement data collected contained
gap periods where the sensors were most probably deactivated.
This is the reason why some parts in the very right of the
speed-flow diagram illustrated in Fig. 4 are far away from the
others, which is due to the abnormal decrease/increase of the
flow.
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Fig. 4. Speed-Flow diagram.

The highest recorded flow was on a Monday morning, more
precisely on November the 5%, 2018 at 06:23:59 am with
a value of 1391 passenger car equivalent per hour per lane.
On the other hand, the peak density took place on November
the 19*", 2018 at 07:20:59 am, where nearly 38 vehicles
(12.63/1ane) occupied one kilometer of the analyzed track.

According to these results, the analyzed motorway section
operated only under LOS A, B, and C throughout the studied
period. The road capacity was never reached, and consequently
not all traffic states were observed in the data. However, for
the purpose of traffic calibration, the collected peak periods
were then studied further to calculate travel time and mean
speed values over the driven path, by comparing the entry
time-stamp of each vehicle at the mentioned sensing points.

As no vehicle tracking information was provided with the
measurement data, the exact travel time and space mean speeds
were not directly deduced from the ASFINAG data. Neverthe-
less, to determine their values a comparison was made between
the peak hours data collected at the two sensing points, where
the distance in-between is already known. This comparison
took into account each vehicle’s length, and velocity as it



passed through the first measurement location. A temporary
travel-time was then calculated and used to point the middle
of a twenty seconds interval where the next sensing point data
were analyzed to locate the presence of a vehicle with the
same characteristics.

B. Models calibration and validation

The calibration and validation of simulation models are two
very related tasks, where the former emphasizes on adjusting
the model inputs so that its outputs are aligned to the real
measurement data, while the latter assesses the degree of
similarity and its reliability, or more precisely to what extent
the model replicates the reality [17]. The applied method
uses a linear-approximations based algorithm to minimize an
objective function and a set of constraints or limitations that
are bound to be positive. Such processes provide a good fit
only when they are near the current simplex. To ensure that,
the linear program also estimates a radius where the solutions
must lay within. This radius decreases with each iteration
thereby shaping a trust region for the approximated values
[18]. Furthermore, the initial estimations and constraints used
were guided by the collected data means and deviations
where possible. If not, the default values and the specified
definition range by SUMO [19] for each parameter were
employed.

Human driver model:
When aggregated data are used to calibrate the traffic micro-
simulation models, the results are always bound to a limited
behavioral influence. It is therefore important to mention that
SUMO sub-models used hereafter are already founded on a
strong theoretical background, as they have been developed
to mimic the driver’s behavior as realistic as possible, based
on different motives that are assessed and controlled by a set
of rules and parameters. These values are defined according
to real measures, or are adapted to a certain data set and
assumptions that may vary under different circumstances and
scenarios. As a result, a re-adaptation is more than necessary
to ensure a good replication of the studied reality [15], [20].

During this study, the default car-following model proposed
by SUMO is used (Stefan Krauss model), where the param-
eters mentioned in Table I (taken from [19]) were calibrated
for each vehicle type.

TABLE I
CAR-FOLLOWING MODEL PARAMETERS
Attribute Description
accel The vehicle’s acceleration ability
decel The vehicle’s deceleration ability
Sigma Driver imperfection

tau The desired minimum time headway

minGap Minimum space to the leader back
The vehicles speed multiplicator
SpeedFactor (based on lane speed limit)
SpeedDev SpeedFactor deviation

Alternatively, for the lane changing behavior modeling, an
analysis assessing the sensitivity of the calibration output

(Travel-Time) regarding the model’s parameters was firstly
made to assess the effectiveness of the adapted approach.
This sensitivity analysis was performed using the open source
Python library “SALib” that enables a black box examination
of the model, where a set of inputs can be generated by a
variety of sample functions that are bound to the number of
inputs, their range of definition, as well as the intended number
of trials. The library enables then to calculate the respective
sensitivity indexes based on the resulting model outputs by
utilizing an analyze function. Table II represents the results
of this analysis, where each attribute denotes the willingness
to perform a lane change due to a certain reason or under a
specific condition. The first-order index “S1” refers to the local
effect of an input on the output variance (without considering
its interaction with the other inputs), and “ST” is the total
sensitivity index that includes interactions as well [21].

The performance of this lane changing model was previ-
ously studied in [22], where its parameters were examined
in order to select the ones with the highest influence on the
vehicle’s lane changing behavior. This study showed that the
parameter “IcAssertive” is the one accounting for most of the
lane changing variance, along with a minor contribution of
the “lcSpeedGain” parameter. Hence, the applied calibration
approach is credible and could be used in order to replicate
the desired behavior according to the results shown in Table II
where “IcAssertive” generated a total sensitivity index of
68.69%.

TABLE II
LANE CHANGING PARAMETERS
Attribute Description S1[%] | ST[%]
IcStrategic {;alllnee changing to avoid a dead-end 00 0.0
lcCooperative Lan.e ch:angmg to facilitate other 00 00
vehicles’ lane change
lcSpeedGain Lane changing to gain speed 19.18 29.51
lcKeepRight Laqe ghanglng due to regulatory 843 20.64
obligations
The desire to accept lower front
IcAssertive and rear gaps on the target lane 54.24 68.69
when executing a lane change

The results of this analysis reflects mainly the features
of the measurement data used in the calibration process,
as neither on-ramp nor off-ramp flows were collected or
included in the study. Therefore, the process could not be
sensitive to such behaviors or motives to perform lane changes.

Calibration and validation Criteria:

The calibration was proceeded using the Relative Root Mean
Square Error (RRMSE) defined in (2) as a measure of close-
ness or proximity. The procedure was then repeated until the
results converged to a certain threshold of accuracy that is
regulated by the optimization function. The results are illus-
trated in Fig. 5, where the generated Kolmogorov—Smirnov
test statistic was computed as 13%, which is interpreted in
[23] as a very plausible fit.
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Fig. 5. Travel-Time Kolmogorov—Smirnov distribution.

However, for validating the calibration outputs, different
time intervals were selected from the sensor data and the
resulted parameters were tested for an RRMSE threshold of
up to maximum 15% [24].

1 N T'sim _ Tobs 2
RRMSE = | =3 (”Tb"> )
n=1 n

where “N” is the number of vehicles or time intervals, “Tflim”
refers to the simulation travel time of vehicle “n” and “Tfl’bs”
represents its observed counterpart. Finally, the parameters for
the human driver model are shown here in Table III as a result
of the whole calibration and validation process, where each
vehicle type is represented by a group of parameters.

TABLE III
VALIDATED PARAMETERS

Attribute Passenger Car | Motorcycles | Trucks | Trailers
accel 2.786 5.994 1.285 1.186
decel 7.424 9.848 3.820 4.013
Sigma 0.292 0.439 0.186 0.008
tau 1.001 1.038 1.775 3.471
minGap 2.377 2.506 2.136 2.181
SpeedFactor 1.193 1.073 1.043 0.866
SpeedDev 0.091 0.134 0.104 0.025
lcSpeedGain 0.887 1.0391 0.985 0.967
IcKeepRight 0.835 1.956 1.696 1.977
IcAssertive 1.616 1.057 1.001 1.157

IV. AUTOMATED VEHICLE MODELS

Here we give the description of the automated vehicle
models utilized for modeling the mixed traffic scenarios, again
based on the SUMO simulation framework. The automated

vehicles are modeled with a combination of a lane-changing
and a car-following model, the details of which are given
below.

A. Lane-changing Model

Automated vehicles are expected to differ from human lane-
changing behavior due to the design of automated driving
functions. LC2013 model from SUMO is adopted for sim-
ulation of automated lane-changing. The appropriate parame-
terization of the LC2013 model is referenced from [22], which
mimics the automated lane-changing behavior in real life.

B. Car-following Model

Advanced Driver Assistance Systems (ADAS) have been
a focus of research in past decades. Adaptive cruise control
(ACC) systems can be viewed as a benchmark ADAS function,
as they have been heavily studied and are currently available
on the market. To simulate the realistic longitudinal automated
driving behavior, the ACC car-following model in SUMO
is applied. The developed ACC control law in SUMO is
explicitly divided into four modes [13]:

1) Speed control: the speed control mode aims to maintain
the driver desired speed.

2) Gap-closing control: the gap-closing control algorithm
enables the smooth transition from speed control mode
to gap control mode.

3) Gap control: the gap control mode is designed to keep
a constant time gap between the ACC-equipped vehicle
and its predecessor.

4) Collision avoidance mode: the collision avoidance mode
averts rear-end collisions when safety critical conditions
prevail.

In case of parameterization, a distribution of time gap settings
is adopted, which is more in accordance to the real field
experiments [25]. The parameterization for the ACC model
is obtained from [22].

V. ANALYSIS BASED ON A TEST SCENARIO

Here we present the results based on simulation analysis
with varying penetration rates. The parameters for both the
human driver model and the automated vehicle model, which
were described previously, were implemented in SUMO. Each
class was defined by a certain distribution, as these distri-
butions were then used to generate different flows for these
two classes. To examine the effects of introducing automated
vehicles in the studied road segment, the penetration rate was
increased by steps of 10% in each simulation run, as traffic
flow and density were recorded and analyzed.

Fig. 6 illustrates the recorded flows and densities for each
penetration rate with a specific shade, starting from a flow
with human-only driver setup, indicated with the dark shade,
ranging all the way up to a fleet composed only by automated
vehicles, indicated with the light shade.

The effects of introducing automated vehicles on the traffic
behavior start vaguely to be observed starting from LOS C
(i.e., flow density >11) even at a relatively low penetration
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Fig. 6. Flow-density curves under different penetration rates of automated
vehicles.

rate. This difference then grows as LOS D and E take place,
where the critical flow is clearly decreasing as the penetration
rate increases. However, when looking into the results of each
run, one can observe that the peak flow has larger drops at
some penetration rates compared to the others, even if the
insertion of the AVs were increased by a fixed step.

The bottom line impact of the mixed traffic can be summa-
rized as follows: As the penetration rate of the AVs increases,
the flow decreases accordingly. So 0% penetration rate shows
better flow rate compared to 10%, 20%.. etc. Nevertheless,
when the motorway is only occupied by AVs, the critical flow
is higher than the one observed at 70% penetration rate, as
the contrast between vehicle behaviors due to mixed traffic
is reduced. Also, even the most aggressive AVs use higher
time headway when compared to a human driver’s average
headway. Humans drivers tend to take risks that AVs cannot
tolerate due to safety reasons, which explains their more
conservative behavior.

VI. CONCLUSIONS

In this paper we analyzed the modeling and tuning of
SUMO traffic simulation models using real traffic measure-
ment data to achieve a good matching of the arrival times
of each vehicle. Then using this tuned traffic model we
analyzed the objective effects of AVs at various penetration
rates on the overall traffic flow characteristics. According to
the current findings based on the SUMO simulation setup,
where the traffic model is tuned to be similar to that of a
measurement data taken from the Austrian A2 motorway in
Graz, the maximum traffic flow rate decreases with increasing
penetration rate of AVs. This result contradicts some literature
utilizing alternative simulation tools [7], [8]. The reason for
this contradiction is that the control logic for modeling of
automated driving is different than what we used, and also
that we utilized a tuned traffic model, which better reflects
human driver behavior in a certain road segment.

In the future extensions of this work, control measure case
studies will be performed to analyze the effects of individual

speed advice, lane-change advice and dedicated lane advice for
the automated vehicles. Such techniques will be implemented
and tested to alleviate the traffic flow with a view to tackle
such traffic scenarios expected in the decades to come.
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