INFRAMIX

INFRAMIX - Project overview

Martin Dirnwoeber / AustriaTech

,114n! Project facts

Duration: 1 June 2017-31 May 2020
EC Funding: $5 \mathrm{M} €$
Coordinator: AustriaTech Consortium:

AustriaTech, ICCS,
Asfinag, Fraunhofer, Siemens,
Virtual Vehicle, Autopistas,
Enide,Technical University of Crete,
TomTom, BMW

INFRAMIX overview

Focus

- Mixed traffic: Automated \& connected, connected, conventional vehicles (different levels of penetration)
- Road infrastructure (high level road network)

3 Key Scenarios

- Dynamic lane assignment
- Roadworks zone
- Bottlenecks

Solutions

- comprising new traffic management and control strategies, new physical and digital road infrastructure elements (define, specify, develop, implement)

Evaluation Tools

- Development of co-simulation framework
- Real world implementation
- Combination of real world and simulation (=Hybrid testing)

Recommendations

- Infrastructure classification scheme
- Safety performance criteria
- Roadmap towards a fully automated transport system
- Exploitation plans
- Design new and upgrade existing physical \& digital road infrastructure elements
- Design novel signalling and visualisation elements
- Design and implement novel traffic estimation, monitoring and control strategies
- Develop a co-simulation environment
- Develop a hybrid testing system
- Evaluate user's appreciation and acceptance
- Evaluate traffic safety
- Create a Road Infrastructure Classification Scheme

Dynamic lane assignment to automated driving

Roadworks zone

- Status quo of test sites and simulation tools as a starting point
- Definition of requirements:
- functional
- feasibility
- non-functional
- Linking of requirements to major INFRAMIX components
- Comprehensive information on the use cases is available on the INFRAMIX website (D2.1)

INFRAMIX

Co-simulation environment:
combines the modelling of the behavior with the traffic simulation

Vehicle behaviour modelling				
Vehicle surrounding	Functional sensors	Automated driving-fct.	Human driver	Vehicle dynamics
Virtual Integration Platform				

- Advanced traffic flow modelling has been realized with the INFRAMIX Co-simulation environment
- Will be used for the evaluation of the three INFRAMIX scenarios for highways.
- The Co-simulation environment consists of
- VSimRTI for microscopic traffic simulation
- ICOS for sub microscopic traffic simulation
- Description of the co-simulation environment is available on the INFRAMIX website (D2.2)

川1中! Road Infrastructure
 INFRAMIX Classification Scheme

Objective:

- Highlight the connectivity and automation capabilities of the infrastructure and its ability to manage the circulation of vehicles of different levels of automation

Targets:

- Indicate the infrastructure connectivity, automation capabilities, capability to host vehicles of different levels of automation and connectivity
- Provide dynamic classification - under certain conditions (e.g. an incident, extreme weather conditions) the circulation of automated vehicles will be affected
- Guide to incrementally upgrading levels of infrastructure to avoid stranded investments

Design and implement novel traffic estimation, monitoring and control strategies

- Traffic estimation, monitoring and control strategies dynamically adapted to
- different penetration levels of automated vehicles,
- infrastructure equipment
- overall traffic status
- Investigation of:
- exploiting AV capabilities towards increased traffic flow efficiency and safety
- increasing the bottleneck capacity by achieving a prespecified (possibly traffic-dependent) lane distribution of vehicles while approaching a bottleneck
- improving the traffic flow at bottlenecks by controlling the upstream flow (investigation of several innovative flow control strategies)

Physical \& digital road infrastructure elements and novel signaling and visualization elements

- Design new and upgrade existing physical \& digital road infrastructure elements
- Design novel signaling and visualization elements
- "Hybrid" infrastructure (physical and digital) able to cope efficiently with the new safety challenges
- Static and dynamic digital representation of the physical world with which the automated vehicle will interact to operate
- New traffic signs for mixed traffic
- Novel traffic monitoring recommendations (wireless messages extensions)

INFRAMIX

INFRAMIX

Snp tavar 0 展 B

INFRAMIX

Coupling infrastructure elements and vehicles on real roads with virtual traffic environment

- Enables detailed and realistic investigations of real driving behaviour in a complex but safe virtual traffic to demonstrate the potential of INFRAMIX.
- Testing of new developments of connected and automated driving
- Emulation of critical traffic situation in a safe artificial environment

川11 appreciation \& acceptance

- Evaluation of
- users appreciation and
- traffic safety
- in mixed traffic through dynamic lane assignment, roadworks zones and bottlenecks traffic scenarios
- Investigation of several cases with safety critical impact (e.g. for the roadworks zones scenario)
- Testing of the developed traffic control algorithms (e.g. for the bottlenecks scenario)
- with increased traffic densities in exceptional conditions
- with different rates of conventional and automated vehicles.
- New traffic estimation and control algorithms for mixed traffic environments
- Simulation environments and hybrid testing for mixed traffic situations
- Extension of traffic messages
- Extensions of existing technologies
- Infrastructure classification scheme (for automation levels of vehicles)
- Set of minimum interventions for infrastructure upgrades
- New safety parameters for assessment

Martin Dirnwöber

austriatech

