

INFRAMIX overview and highlights

Martin Dirnwoeber / AustriaTech

Project overview

Duration: 1 June 2017-31 May 2020 EC Funding: 5M € Coordinator: AustriaTech Consortium: AustriaTech, ICCS, Asfinag, Fraunhofer, Siemens Mobility, Virtual Vehicle, Autopistas, Enide, Technical University of Crete, TomTom, BMW

Avoiding decrease of safety and efficiency by infrastructure support

Mixed traffic situations will decrease efficiency and safety Infrastructure support can increase efficiency and safety

26/5/2020

Support from infrastructure at different levels

Support perception capability of AVs	• extend e-horizon (e.g. road works with lane deviations or incidents ahead) including information on detailed lane layout in road work zones
Improve conditions for AV manoeuvres	 Lane change advice before an on-ramp creating more space for merging (automated) vehicles
Support drivers of conv. vehicles	• New lane markings for AD lanes
Improve traffic situation	• Provide recommendations to connected and automated vehicles to increase efficieny (e.g. gap advice in bottlenecks)

26/5/2020

INFRAMIX

3 Scenarios – 3 key areas

Approach and highlights

26/5/2020

Poll question

INFRAMIX

What will be the most important function of digital road infrastructure?

- supporting automated vehicles functions
- facilitating new ways of traffic management through interaction with automated and connected vehicles
- integrating new mobility services in the transport system (e.g. by management of intermodal hubs)
- enabling new ways of road maintenance

Martin Dirnwoeber

austriatech

INFRAMIX online final conference

Physical and digital infrastructure

Daniel Tötzl, Siemens Mobility Austria GmbH

Initial situation & objectives

- Design and development of infrastructure elements
 - Considering existing systems
 - Design & development of system enhancements
- Traffic Management
 - Integration of new traffic control & estimation algorithms
 - Analysis of required input-data
 - Implementation of data-interfaces
- Communication between the infrastructure and end users
 - Analysis of visual "needs" and gaps for conventional vehicles
 - Application of a digital hybrid communication
 - Application & enhancement of existing standardized message-types

INFRAMIX

INFRAMIX architecture

INFRAMIX

INFRAMIX end-to-end process

Repetitive 3-step approach:

Evaluation & Processing

Distribution

Provision of traffic data

Provided by:

- Road Operator
- Traffic Service Provider
- Original Equipment Manufacturer

Traffic Estimation & Traffic Control Strategies

Performed by:

• Road Operator

Traffic control commands

Performed by:

- Road Operator
- Traffic Service Provider
- Original Equipment Manufacturer

26/5/2020

Evaluation & Processing

- INFRAMIX Management Center processes traffic data in order to perform:
 - Traffic estimation algorithms
 - Traffic control algorithms

- Provides traffic management capabilities to execute:
 - Dynamic Lane assignment
 - Time-gap advices
 - Variable speed limits
 - Lane change advices

INFRAMIX

26/5/2020

- The INFRAMIX end-to-end solution underlines the combined effect of different stakeholders to support the mixed traffic
- The resulting system architecture reveals the importance of having one reliable central source to perform a generic traffic management
- Digital hybrid-communication approach reveals positive effects for supporting the future arising mixed traffic

Thank you for your attention!

Daniel Tötzl

daniel.toetzl@siemens.com

Q&A

26/5/2020

INFRAMIX online final conference

ISAD classes

Dr. Panagiotis Lytrivis / ICCS

- Motivation
- Methodology
- ISAD classes overview
- Conclusions & Next steps
- Sources

INFRAMIX

- The focus in the recent years is mainly on the "vehicle" side of the transport ecosystem
 - Automated driving (AD) (evolution of ADAS)
 - Taxonomy of AD (SAE levels)
- Role of the **infrastructure** in AD:
 - Support the transition period and mixed traffic
 - Enhance **electronic horizon** of connected and automated vehicles
 - Facilitate the **cooperation** between different types of vehicles with different capabilities
 - Manage and control traffic in an efficient and safe way avoiding potential bottlenecks
 - Provide consistent electronic and visual signals for all types of vehicles

26/5/2020

SAE J3016[™]LEVELS OF DRIVING AUTOMATION

INFRAMIX final online conference

3

INFRAMIX

ISAD – Methodology

Creation of a highlevel system architecture: Definition of the system, its main components and associated challenges for further deployment

Group current state-of-the-art and challenges into **physical-digitaloperational layers** (see next slide) Categorization of the different types of information the infrastructure can provide to the vehicles & identification of the means the above information can be communicated Creation of a gradually enhanced classification scheme where each class includes the capabilities of the previous one plus additional features

ISAD classes

Continuous improvement through workshops with experts & INFRAMIX Advisory Group (interviews, questionnaires etc.)

26/5/2020

INFRAMIX final online conference

4

INFRAMIX

Road Infrastructure – Physical, Digital & Operational

26/5/2020

ISAD Classes

• Incremental classes

"E": typical/conventional

"A": most advanced

17					gital inf rovided		
	Level	Name	Description	Digital map with static road signs	VMS, warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap, lane advice
ional cture	E	Conventional infrastructure / no AV support	Conventional infrastructure without digital information. AVs need to recognise road geometry and road signs.				
Conventional infrastructure	D	Static digital information / Map support	Digital map data is available with static road signs. Map data could be complemented by physical reference points (landmarks signs). Traffic lights, short term road works and VMS need to be recognized by AVs.	×			
ø	С	Dynamic digital information	All dynamic and static infrastructure information is available in digital form and can be provided to AVs.	x	x		9 9
Digital infrastructure	в	Cooperative perception	Infrastructure is capable of perceiving microscopic traffic situations and providing this data to AVs in real-time.	×	х	x	
l infra	A	Cooperative driving	Based on the real-time information on vehicle movements, the infrastructure is able to guide AVs (groups of vehicles or single vehicles) in order to optimize the overall traffic flow.	x	x	x	x

Conclusions & Next steps

- The goal of the work is to provide a guide for incremental upgrades of the road infrastructure (physical, digital)
- The work was targeting highways but could be easily extended to urban and rural roads
- Enhancement of the scheme to become a **dynamic** and continuous classification based on current road situation, offered TMC capabilities, etc.
 - Investigate how ISAD can support closing the **ODD** (Operational Design Domain) gaps

26/5/2020

INFRAMIX

1. Book on C-ITS (Chapter 14)

- Amditis, A., Lytrivis, P., Papanikolaou, E., Carreras, A., Daura, X. (2019).
- "Road infrastructure taxonomy for connected & automated driving".
- <u>Chapter 14</u> in: Lu, M. (ed.). Cooperative intelligent transport systems. Towards highlevel automated driving, IET, pp. 309–325

	(ET	(T
Chapter 14 Road infrastructure taxonomy for connected and automated driving Angelos Amditis ¹ , Panagiotis Lytrivis ¹ .		Engineering and Technology Cooperative Intelligent Transport Systems
Angeros Annanis , runagonis Lyrrvis , Evdokia Papanikolaon ² , Anna Carreras ² and Xavier Daura ²	Cooperative Intelligent Transport Systems Towards high-level automated driving	Towards high-level automated driving Edited by Meng Lu
The majority of the research efforts related to automated driving is focused on the vehicle side. Only recently, the role of the road infrastructure and how it can support the gradual insertion of Automated Vehicles (AVs) attracted attention. In particular, the upgrades of the infrastructure in terms of connectivity, along with Traffie-Management Centres (TMCs) deployment, are recognized as indispensable parts for data exchange and management of mixed vehicle traffie flows. Apart from the minimum road infrastructure quality standards (e.g. clear lane markings, visibility of single), the kind of support provided by the infrastructure to the AVs (e.g. availability of highly accurate maps, guidance via wireless messages, detailed weather information and recommendations for optimum roule is important information which is expected to increase the use of automated functions while driving. The taxonomy of the infrastructure and the relevant requirements to support constructure supported, the road infrastructure sported excision, and in diving situations. An early attempt to cluster infrastructure supported, the road infrastructure and the rinfrastructure support decision-making, while at the highest level, named 'the infrastructure support functions. Almost a decade later, preliminary infrastructure requirements have been set for a coordinated automated raneport future, as it is envisioned in [2]. In [3], the potential automated road transport future, as an it is envisioned in [2]. In [3], the potential future is presented where the infrastructure could provide lowards automation in road transport is possible out. Furthermore, in [4], a cooperative road intersportation future is presented where the infrastructure has an indispensable role.		
¹ Institute of Communication and Computer Systems (ICCS), LSENSE Group, Athens, Grocce ² Innovation Department, Abertin Autopistas Escuita, Barcelona, Spain	dited b	

8

- 2. Infrastructure Classification Scheme (D5.4)
- Public deliverable available online: <u>https://www.inframix.eu/wp-</u> <u>content/uploads/D5.4-Infrastructure-Classification-Scheme.pdf</u>

26/5/2020

Thank you for your attention!

Dr. Panagiotis Lytrivis Senior Researcher, ICCS panagiotis.Lytrivis@iccs.gr

INFRAMIX online final conference

ISAD classes examples

Yannick Wimmer / ASFINAG

Infrastructure can help to close ODD* gaps by providing support INFRAMIX

*ODD: Operational design domain

© Tom Alkim

Connecting Infrastructure and Vehicles improves traffic

Infrastructure equipment on Austrian motorways

					Digtial information pr			to AVs
	ISAD	Name	Infrastructure side	AV side	Digital map with road signs	VMS warnings, incidents, weather	Microscopic traffic situations	Guidance: speed, gap, lane advice
Conventional	Е	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own				Y.
infrastructure	D	Static digital information / map support	Digital map data (including static road signs) complemented by physical reference points	Traffic lights, short-term road works and VMS have to be recognized by AVs on their own				
	С	Dynamic digital information	All static and dynamic information can be provided to the AVs in digital form	AVs perceive infrastructure support data				
Digital infrastructure	В	Cooperative perception	Infrastructure is capable of perceiving microscopic traffic situations	AVs perceive infrastructure support data in real time (C-ITS Day 1)				
	Α	Cooperative driving	Infrastructure is capable of perceiving vehicle trajectories and guide single AVs (or AV groups)	AVs are guided by the infrastructure in order to optimise traffic flow (C-ITS Day 2+)				

ISAD Classification Scheme (Carreras et al. 2018)

		[]	1		Digtia	l informatio	n provided	to AVs
	ISAD	Name	Infrastructure side	AV side	Digital map with road signs	VMS warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap, lane advice
Conventional Infrastructure	Е	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own				

ISAD Classification Scheme (Carreras et al. 2018)

					Digtial	informatio	n provided	to AVs
	ISAD	Name	Infrastructure side	AV side	Digital map with road signs	VMS warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap, lane advice
Conventional	Е	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own				
Infrastructure	D	Static digital information / map support	Digital map data (inIcuding static road signs) complemented by physical reference points	Traffic lights, short term road works and VMS have to be recognized by AVs on their own				

ISAD Classification Scheme (Carreras et al. 2018)

	1	1			Digital information provided to AVs					
	ISAD	Name	Infrastructure side	AV side	Digital map with road signs	VMS warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap. lane advice		
Conventional	E	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own			_			
Infrastructure	D	Static digital information / map support	Digital map data (inlcuding static road signs) complemented by physical reference points	Traffic lights, short term road works and VMS have to be recognized by AVs on their own						
Digital Infrastructure	С	Dynamic digital information	All static and dynamic information can be provided to the AVs in digital form	AVs perceive infrastructure support data						

INFRAMIX

ISAD Classification Scheme (Carreras et al. 2018)

	1			ľ.	Digtial information provided to AVs					
	ISAD	Name	Infrastructure side	AV side	Digital map with road signs	VMS warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap, lane advice		
Conventional	E	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own				5		
Infrastructure	D	Static digital information / map support	Digital map data (inlcuding static road signs) complemented by physical reference points	Traffic lights, short term road works and VMS have to be recognized by AVs on their own						
Digital	С	Dynamic digital information	All static and dynamic information can be provided to the AVs in digital form	AVs perceive infrastructure support data						
Infrastructure	, B	Cooperative perception	Infrastructure is capable of percieving microscopic traffic situations	AVs perceive infrastructure support data in real time (C-ITS Day 1)						

INFRAMIX

ISAD Classification Scheme (Carreras et al. 2018)

	1			1	Digtial information provided to AVs					
	ISAD	Name	Infrastructure side	AV side	Digital map with road signs	VMS warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap, lane advice		
Conventional	Е	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own				4		
Infrastructure	D	Static digital information / map support	Digital map data (inlcuding static road signs) complemented by physical reference points	Traffic lights, short term road works and VMS have to be recognized by AVs on their own						
Digital	С	Dynamic digital information	All static and dynamic information can be provided to the AVs in digital form	AVs perceive infrastructure support data						
Infrastructure	В	Cooperative perception	Infrastructure is capable of percieving microscopic traffic situations	AVs perceive infrastructure support data in real time (C-ITS Day 1)						

ISAD Classification Scheme (Carreras et al. 2018)

	1		1	(Digtial information provided to AVs			
	ISAD	Name	Infrastructure side	AV side	Digital map with road signs	VMS warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap, lane advice
Conventional Infrastructure	Е	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own				
	D	Static digital information / map support	Digital map data (inlcuding static road signs) complemented by physical reference points	Traffic lights, short term road works and VMS have to be recognized by AVs on their own				
Digital Infrastructure	С	Dynamic digital information	All static and dynamic information can be provided to the AVs in digital form	AVs perceive infrastructure support data				
	В	Cooperative perception	Infrastructure is capable of percieving microscopic traffic situations	AVs perceive infrastructure support data in real time (C-ITS Day 1)				
	A	Cooperative driving	Infrastructure is capable of percieving vehicle trajectories and guide single AVs (or AV groups)	AVs are guided by the infrastructure in order to optimize traffic flow (C-ITS Day 2+)				
		art						

INFRAMIX

ISAD Classification Scheme (Carreras et al. 2018)

26/5/2020

Poll

Preliminary Austrian ISAD classification

Thank you for your attention!

Yannick Wimmer ASFINAG <u>Yannick.Wimmer@asfinag.at</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Traffic Estimation and Control Strategies

Ioannis Papamichail Technical University of Crete, Greece

Vasileios Markantonakis, Aneza Doko and Markos Papageorgiou

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Traffic state estimation and traffic control INFRAMIX algorithms for mixed vehicle traffic

- Traffic state estimation for mixed vehicle traffic
 - The cross-lane case
 - The per-lane case
- Traffic control algorithms for mixed vehicle traffic
 - Dynamic lane assignment
 - ACC parameters adaptation
 - Lane-change advice
 - Mainstream traffic flow control via VSL
- Software tools and interfaces have been developed for use within the cosimulation environment and the IMC

Traffic estimation for mixed vehicle traffic

- In conventional traffic, real-time traffic data are provided by spot sensors positioned at appropriate locations.
- Connected vehicles may communicate their position, speed and other relevant information, i.e. they can act as mobile sensors.
- This allows for a sensible reduction (and, potentially, elimination) of the necessary number of spot sensors, which would lead to sensible reduction of the purchase, installation and maintenance cost for traffic monitoring.
- Developments considered both the aggregated (cross-lane) case and the case of lane-based estimation, which is essential for some control applications.
- Information is provided by connected vehicles and is fused with measurements stemming from a minimum number (necessary for flow observability) of spot sensor measurement.
- Lane change information from connected vehicles has been exploited to assess the level of lateral flows.
- Robust and practice relevant tools have been developed.

26/5/2020

Traffic estimation for mixed vehicle traffic: The cross-lane case

Coefficient of Variation (CV) for density (left) and ramp flow (right) estimations calculated for various penetration rates

26/5/2020

Traffic estimation for mixed vehicle traffic: The cross-lane case

Comparison between real (left) and estimated (right) density for mixed traffic with a 70% penetration rate of connected vehicles (30% CV - 45% CCV – 25% AV)

26/5/2020

Traffic estimation for mixed vehicle traffic: The cross-lane case

Comparison between real (blue) and estimated (black) flows and densities at the bottleneck area for mixed traffic with a 70% penetration of connected vehicles

26/5/2020

Comparison between real (blue) and estimated (black) ramp flows for mixed traffic with a 70% penetration of connected vehicles; on-ramp (left) and off-ramp (right)

26/5/2020

Traffic estimation for mixed vehicle traffic: The per-lane case

Comparison between real (left) and estimated (right) density per lane for mixed traffic with a 70% penetration rate of connected vehicles

26/5/2020

Traffic control algorithms for mixed vehicle INFRAMIX Traffic

- The automotive industry has mainly focused on designing algorithms that optimize the behaviour of an individual vehicle, rather than on optimizing the overall efficiency of the traffic network.
- This vehicle-centric approach needs to be appropriately extended in mixed traffic conditions to also benefit traffic flow capacity and efficiency, particularly in heavy traffic conditions, as, for example, during rush hours, at bottlenecks locations.
- Appropriate novel traffic management concepts have been developed which will enable the exploitation of existing or emerging vehicle automation and connectivity towards increased traffic flow efficiency.

Traffic control algorithms for mixed vehicle INFRAMIX Traffic

Algorithms have been developed for:

- Dynamic lane assignment for AVs based on traffic conditions and penetration rate
- ACC time-gap adaptation to maximize capacity and throughput in critical traffic conditions and near bottlenecks (e.g. lane drop, sag, tunnel etc.).
- Lane-change advice (for individual connected vehicles) aimed to maximise the benefits for both individual drivers (of connected vehicles) and the overall traffic flow.
- Mainstream traffic flow control via VSL (using VMSs and V2I communication) for maximum traffic efficiency in mixed traffic.

Traffic control algorithms for mixed vehicle traffic: Dynamic lane assignment

A simple threshold-based control strategy has been developed:

- We consider a motorway stretch divided into *n* segments and a flow capacity that is obtained around a critical density ρ_{cr} .
- Only one specific lane can be assigned to AVs, as long as some conditions are met.
- The location of the lane (e.g. right or left lane) and the minimum number of consecutive segments (≤n) that are required for the activation of a dedicated lane are preselected by the operator considering traffic management goals as well as safety parameters.
- There is a predefined minimum period of activation.
- Adequate physical infrastructure adaptations have been considered by the cosimulation environment in order to achieve availability and consistency of information for all types of vehicles. CVs can be informed using VMSs at the beginning of each segment, while AVs receive the information as well specific lane-change advices via communication well in advance.

26/5/2020

Traffic control algorithms for mixed vehicle traffic: Dynamic lane assignment

- From the results it can be concluded that in most of the simulations the situation is beneficial for AVs, especially when traffic demand (density) is low and the penetration of AVs is 25%, but it is not for the rest of the traffic. This leads to a deterioration of the calculated KPIs for the whole population.
- The results are not really sensitive with respect to the values used for the max thresholds.
- As expected, whenever areas around sets of on/off-ramps are included in the assignment logic the results are a bit better compared to the opposite case. Of course, this is due to the fact that the lane assigned is always the fast one and inclusion of these areas leads to assignments that continue through the network without interruptions that may lead to more weaving. The DLA controller is able to deactivate these segments on its own based on the density thresholds used.

The main philosophy behind the proposed concept is to:

- leave the ACC-settings untouched at their driver-selected values if traffic flow is clearly under-critical so as to limit interventions only to traffic situations that call for efficiency increase; and
- change the ACC-settings gradually as appropriate to improve the flow efficiency when critical traffic states are imminent or present.

The proposed control strategy is only dependent on real-time information about the current traffic conditions and is actually activated only when, where and to the extent needed.

Spatio-temporal diagrams of speed (no-control and control) for mixed traffic with a 45% penetration rate of connected vehicles (55% CV - 30% CCV – 15% AV)

26/5/2020

Spatio-temporal diagrams of speed (no-control and control) for mixed traffic with a 70% penetration rate of connected vehicles (30% CV - 45% CCV – 25% AV)

26/5/2020

For the no-control scenario, vehicles are using a range of different default time-gap values: 1.1 sec for slow CVs and CCVs, 0.9 sec for fast CVs and CCVs, 1.4 sec for slow AVs and 1.4 for fast AVs.

For the control scenario 3 we use 1.0 sec as the minimum time-gap suggested, while for he control scenario 4 we use 0.8 sec.

Traffic control algorithms for mixed vehicle Traffic: Lane-change advice

The problem of manipulating the lateral flows upstream of a bottleneck location in order to increase capacity and hence retard or avoid the creation of congestion is formulated as a Linear Quadratic (LQ) optimal control problem.

The solution to the formulated optimal control problem is given through an LQR in the form of a linear state feedback-feedforward control law.

Traffic control algorithms for mixed vehicle traffic: Mainstream traffic flow control

The main purpose of mainstream traffic flow control (MTFC) is to enable the mainstream traffic flow that is approaching areas with particular infrastructure layout, e.g. on-ramp merges, mainstream lane-drops or other bottlenecks, to take values that will allow the establishment of optimal traffic conditions for any appearing demand.

Some VSL practical implementation aspects are taken into account.

26/5/2020

Thank you for your attention!

Ioannis Papamichail Technical University of Crete, Greece ipapa@dssl.tuc.gr

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Microscopic Evaluations using the INFRAMIX Co-Simulation Framework

Karl Schrab Fraunhofer FOKUS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Individual Simulation Domains **INFRAMIX** Evaluation of INFRAMIX use cases and scenarios requires a co-simulation framework Estimation/Control Traffic Management Centre (TMC) Third party services **INFRAMIX Management Center (IMC)** Traffic services Process data from Static Content provider (HD maps) third party services Traffic estimation algorithms Traffic control strategies Vehicle services Exchange data eXtended Floating Car Data Interfaces to with vehicle C-ITS RSU management & exchange data services Individualized **Estimation/Control** control strategies Road CELLULAR infrastructure C-ITS RSU dynamic signage 8 **Digital Map** Road infrastructure sensors Automated vehicles

Traffic/Vehicle Modelling

Conventional vehicles

Infrastructure

Communication

26/5/2020

26/5/2020

Simulation Modelling Aspects

Simulation Models include:

Highway segmentation

Variable Message Signs (Speed and Lane Assignment)

Sensors (Spot sensors, Camera)

Different communication links (ITS-G5, Cellular)

Traffic Services

26/5/2020

Conventional & Automated Vehicles

Traffic Estimation And Control (Software in the loop)

Integration of Control Algorithms

Algorithms encapsulated in DLL

Application with

- Interface
- Translation in co-simulation
 domains

Allows for

- Speed Advice
- Gap Advice
- Acceleration Advice
- LaneChange Advice
- Set advices via VMS

26/5/2020

Simulation Scenario (AP7 Girona)

INFRAMIX

Dividing test site into 40 segments (~ 500 m each)

 Gantries with VMS and spot sensors at each segment entry

Used toll data from 28.07.2017 to create and calibrate traffic model

- ~ 125.000 trips
 (87% Car, 11% Trucks, 2% Motorcycles)
- Increased traffic demand at on-ramp of segment 30 to produce capacity drop

26/5/2020

INFRAMIX

Capacity Drop

26/5/2020

Scenario Variations for Evaluation

INFRAMIX

General Parameters

- P1 Traffic Volume
 - A: 08:00 10:00 (high traffic)
 - B: 10:00 12:00 (low traffic)

• P2 – Communication Link

- A: No Communication with vehicles
- B: Cellular communication
- C: ITS-G5 with low RSU coverage (2 km)
- D: ITS-G5 with high RSU coverage (0.5 km)
- P3 TMC Update Interval
 - A: 10s
 - B: 60s
- P4 Penetration Rates
 - CCVs: [0-100%]
 - AVs: [0-100%]

DLA Parameters

- > P5 AV Lane Position
 - A: leftmost lane
 - B: rightmost lane

Bottleneck Parameters

- > P5 Segmentation
 - A: VMS for each segment
 - B: VMS for some segments only
 - C: No infrastructure, virtual segments only

> P6 – Algorithm Variations

- A: Speed Advices
- B: Lane Change Advices
- C: Speed Advices, Lane Change Advices

8

- D: Time-Gap & Acceleration Advices

Evaluating the VSL Controller (1)

- INFRAMIX
 - 1. Analysis of Infrastructure Requirements (VMS) for Variable Speed Limit Control
 - A) Static Speed Signs / No Control algorithm active
 - B) Variable Speed Signs for **each segment**
 - C) Variable Speed Signs for **few segments** at strategic positions

26/5/2020

INFRAMIX final online conference

9

Evaluating the VSL Controller (1)

1. Analysis of Infrastructure requirements for Variable Speed Limit Control

Travel Delay Improvement

■ Few VMS ■ Full VMS

INFRAMIX

Evaluating the VSL Controller (2)

- INFRAMIX
 - 2. Analysis of **Communication Requirements (RSUs)** for Variable Speed Limit Control Instead of switching Variable Speed Signs, **Speed advices** are sent out all connected and automated vehicles, which adjust their speed accordingly.
 - A) No control algorithm active
 - B) ITS-G5: High coverage of Road Side Units (every 500m)
 - C) ITS-G5: Low coverage of Road Side Units (every 2 km)
 - D) Cellular: No Road Side Units, use cellular communication (e.g. LTE)

Evaluating the VSL Controller (2)

2. Analysis of **Communication Requirements (RSUs)** for Variable Speed Limit Control Instead of switching Variable Speed Signs, **Speed advices** are sent out all connected and automated vehicles, which adjust their speed accordingly.

Travel Time Delay Improvement

26/5/2020

INFRAMIX

Conclusions / Key Results

- INFRAMIX
 - Co-simulation environment VSimRTI was employed and enhanced to allow for an extensive evaluation of the developed traffic estimation and control algorithms
 - New application interface to seamlessly integrate external code (control algorithms)
 - New models for infrastructure elements (VMS, sensors)
 - Coupling of microscopic traffic simulation with and sub-microscopic vehicle simulation.
 - A holistic microscopic simulation scenario was created and calibrated on the basis of the real-world traffic data
 - 24h of traffic in the simulation, with more than 125.000 vehicles on AP-7 Girona, mix of Trucks, conventional vehicles, connected vehicles, automated vehicles
 - Analysed infrastructure and communication requirements for the VSL controller
 - Up to 15% improvement in traffic efficiency using variable speed limits displayed on VMS
 - Placing few VMS on strategic positions shows slightly lower performance than a full deployment
 - With a moderate penetration rate of connected vehicles, VSL control works without VMS / Gantries

13

Karl Schrab Fraunhofer FOKUS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

INFRAMIX online final conference

Martin Rudigier/Virtual Vehicle

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Submicroscopic simulation – Introduction

- Submicroscopic co-simulation
- Modules of the submicroscopic simulation
- Characteristics of submicroscopic simulation

Scenarios and Results

- Road and Traffic
- Bottleneck Onramp
- Bottleneck Main road
- Roadworks zone

26/5/2020

- INFRAMIX
 - Microscopic simulation
 - a huge number of vehicles
 - Low details on vehicle level
 - Submicroscopic simulation
 - One vehicle
 - Detailed vehicle dynamic model
 - Sensor model
 - ADAS functions (ACC, LKA, ...)
 - Automated driving functions (Trajectory planning, ...)
 - Co-simulation
 - To get the best of both worlds

Submicroscopic simulation – Introduction

- Submicroscopic co-simulation
- Modules of the submicroscopic simulation

Scenarios and Results

- Road
- Traffic
- Bottleneck Onramp
- Bottleneck Main road
- Roadworks zone

Scenarios and results

Simulated part of the Austrian test site

Scenarios and results

Traffic flow:

Level of Service	Flow
	veh/h
LOS A	1580
LOS B	3065
LOS C	4410
LOS E	5180

Vehicle types:

Vehicle Type	Part of the flow
Conventional vehicles	64.5%
Automated vehicles	21.2%
Motorcycles	2.3%
Trucks	4.7%
Trailers	6.9%

Bottleneck onramp

- VuT (Vehicle under Test) starts form the onramp
- Mixed traffic on the main road

- Baseline
 - VuT tries to merge without any help from the infrastructure
- Measure I
 - Via VMS and IVIM the speed of the traffic on the main road is reduced to 100km/h

• Measure II

- Via VMS and IVIM the speed of the traffic on the main road is reduced to 100km/h
- Automated vehicles on the main road receive an IVIM with a lane change recommendation

Bottleneck - onramp

INFRAMIX

	Demanded	Baseline	Measure I	Measure II
	Flow	Flow	Flow	Flow
	veh/h	veh/h	veh/h	veh/h
LOS A	1580	1603	1612	1609
LOS B	3065	3051	3059	3053
LOS C	4410	4397	4414	4368
LOS E	5180	4952	5008	4735
		Baseline	Measure I	Measure II
		Baseline Number of Stops	Measure I Number of Stops	Measure II Number of Stops
LOS A	VuT			
LOS A LOS B	VuT VuT	Number of Stops	Number of Stops	Number of Stops
		Number of Stops 0	Number of Stops 0	Number of Stops 0

26/5/2020

Bottleneck - onramp

INFRAMIX

26/5/2020

Bottleneck – main road

- INFRAMIX
 - VuT starts on the main road
 - Mixed traffic starts on the main road
 - 10% of mixed traffic starts on the onramp

- Baseline
 - No measure supports the vehicles from the onramp when merging
- Measure I
 - Via VMS and IVIM the speed of the traffic on the main road is reduced to 100km/h
- Measure II
 - Via VMS and IVIM the speed of the traffic on the main road is reduced to 100km/h
 - Automated vehicles on the main road receive an IVIM with a lane change recommendation

Bottleneck – main road

INFRAMIX

	Demanded	Baseline	Measure I	Measure II
	Flow	Flow	Flow	Flow
	veh/h	veh/h	veh/h	veh/h
LOS A	1580	1593	1584	1576
LOS B	3065	2995	2977	2971
LOS C	4410	3995	4000	3819
LOS E	5180	4567	4573	4026

Bottleneck – main road

INFRAMIX

INFRAMIX final online conference

14

- In Segment 3 the rightmost lane is declared as an roadworks zone and blocked. Only 2 of 3 lanes remain for the traffic.
- The onramp is also closed
- The VuT and the mixed traffic drive at the main road.

- Baseline
 - The VuT recognices with its own sensors the roadworks zone
- Measure
 - The VuT is informed via a DENM about the upcoming roadworkzone and can early start a lane change manouvre to merge into the 2 remaining lanes.

INFRAMIX

Roadworks zone

	Traffic flow, Baseline			Traffic flow, Measure				
	Mean	Deviation	Min	Max	Mean	Deviation	Min	Max
	veh/h	veh/h	veh/h	veh/h	veh/h	veh/h	veh/h	veh/h
LOS_A	1637	418	420	2580	1643	428.1	420	2580
LOS_B	2910	473.2	1402	4380	2963	475.3	1402	3780
LOS_C	3350	511.5	2340	4440	3370	515.5	2160	4260
LOS_E	3485	478.3	1620	4260	3483	462	1620	4200

26/5/2020

	Base	eline	Measure		
	Num. Num.		Num.	Num.	
	stopped	Merged	stopped	merged	
LOS A	3	34	0	27	
LOS B	3	26	1	4	
LOS C	3	26	2	12	
LOS E	3	35	2	23	

26/5/2020

Thank you for your attention

Martin Rudigier

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

1₁₁ Backup INFRAMIX

INFRAMIX

TTC as Safety KPI

SC3UC3, Bottleneck, Onramp						
LOS A LOS B LOS C LOS E						
KPI _{TTC 3,Speed Advice}	-52.8 %	-1.2 %	-14.4 %	6.6 %		
KPI _{TTC 3, Lane Change Advice} 22.1 % 29.2 % -2.7 % 4.8 %						

26/5/2020

INFRAMIX final online conference

20

10

Brake rate as Saftey KPI

INFRAMIX

- Idea
 - Count events, with acceleration lower than a threshold
- Acceleration not available, differentiate velocity
- Filter
- Threshold

26/5/2020

Hybrid Testing:

A Vehicle-in-the-Loop Methodology for Evaluating Automated Driving Functions in Virtual Traffic

Dr. Selim Solmaz / Virtual Vehicle

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Hybrid Testing Concept

26/5/2020

26/5/2020

HD-Map of the Proving Ground

. INFRAMIX

- Open drive map format (.xodr) file of the ÖAMTC Lang-Lebring proving ground near Graz
- A straight road section with approximate usable length of ~250 m and width of at least 10 m across the main testing zone
- 3 virtual lanes with a width of 3.5m each + additional maneuver space as buffer zone

Hybrid Testing Experiments and Scenarios

Exp. Stack 1) Onramp – Merge into the main road

• Without traffic

INFRAMIX

- With low traffic
- With high traffic

Exp. Stack 2) Main road – speed recommendation (IVIM)

- Main road without traffic
- Main road without traffic & speed recommendation (IVIM)
- Main road speed recommendation (IVIM) with vehicle in front & MWC overtakes
- Main road speed recommendation (IVIM) with vehicle in front MWC adapts speed

26/5/2020

Scenario Description:

INFRAMIX

Merge into main road without traffic

- VuT starts at the rightmost lane & accelerates to 30 km/h
- When the VuT reaches 20 km/h (parameter) it starts the lane change manoeuvre to merge into the main lanes (lane 2 and 3 from the right)
- No interfering traffic

Merge into main road without traffic

• Data Sample

INFRAMIX

- Postprocessing
- Longitudinal dynamics

INFRAMIX final online conference

Merge into main road without traffic

• Data Sample

INFRAMIX

- Postprocessing
- Ego-vehicle track

26/5/2020

Merge into main road without traffic

• Data Sample

INFRAMIX

- Postprocessing
- Lateral dynamics

26/5/2020

Onramp Scenario: Merge into the main road with Traffic

Scenario Description:

Merge into main road with low/high traffic

- VuT starts at the rightmost lane & accelerates to 30 km/h
- When the VuT reaches 20 km/h (parameter) it starts the lane change manoeuvre to merge into the main lanes (lane 2 and 3 from the right).
- Three vehicles on the main road

26/5/2020

Onramp Scenario: Merge into the main road with Traffic

- Merge into main road with high traffic
- Lane Change not possible, MWC performs a safety stop

• No Message vs. with ITS-G5 Message

Main road – max speed (IVIM) with vehicle in front, MWC overtakes

Scenario Description:

With max speed (IVIM), vehicles in front and MWC overtakes

- The VuT starts on the left side of the track on the middle lane (lane-2), accelerates from stand still to 30 km/h and changes the lane before the lane ends
- After ~100m from the start, the VuT receives an IVIM via its OBU with a new max. speed of recommendation of 50 km/h and accelerates to this speed but a slower vehicle in front of the VuT hinders the VuT reaching the new max speed without overtaking
- The VuT performs a lane change manoeuvre to overtake

26/5/2020

Main road – max speed (IVIM) with vehicle in front, MWC adapts speed

Scenario Description:

With max speed (IVIM), vehicles in front and MWC adapts speed

- The VuT starts on the left side of the track on the middle lane (lane-2), accelerates from stand still to 30 km/h and changes the lane before the lane ends
- After ~100m from the start, the VuT receives an IVIM via its OBU with a new max. speed of 40 km/h and accelerates to this speed
- A slower vehicle in front of the VuT hinders the VuT reaching the new max speed without overtaking forcing the VuT to follow behind it

26/5/2020

Main road – max speed (IVIM) with vehicle in front, MWC adapts speed

26/5/2020

Experiment (Stack-II) KPI Results

INFRAMIX

Scenario /Testday /Testrun	IVI send	IVI received	IVI Speed	VuT has adapted the speed	mean Speed VuT	mean speed VuT in rel. zone	mean speed all	min dist gap	min time gap	min TTC
-	-	-	km/h	-	km/h	km/h	km/h	m	S	S
4/2/1	no	no	N/A	no	30.7	30.1	30.7	N/A	N/A	N/A
5/2/1	yes	yes	40	yes	34.5	37.7	34.5	N/A	N/A	N/A
5/2/2	yes	yes	50	yes	36.4	41.9	36.4	N/A	N/A	N/A
6/2/1	yes	yes	50	no	34.2	36.1	29.7	11.7	1.17	4.85
6/2/2	yes	yes	50	no	34.2	36.3	29.4	13.82	1.33	5.2
7/2/1	yes	yes	50	no	28.3	27.1	25.1	2.04	0.4	1.36
7/2/2	yes	yes	50	no	23	23.4	19.1	3.34	0.5	3.46

26/5/2020

Findings & Conclusion

- Repeatable and stable real-world proof of concept runs were demonstrated on the ÖAMTC Lang-Lebring Proving Ground
- Data Collected & proof-of-concept shown
- Comparison between sub-microscopic simulations were made
- Methodology particularly suitable to evaluate ADAS functions in various and randomized traffic scenarios
- Another potential utilization is for testing the effect of C-ITS messages on mixed traffic scenarios
- Potential extensions are possible and is planned for follow-up research activities:
 - Sensor modelling
 - 3D visualization integration
 - Integration of vehicular sensors to the co-simulation framework
 - Digital twin calibration

INFRAMIX

Thank you for your attention

Dr. Selim Solmaz selim.solmaz@v2c2.at

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

INFRAMIX online final conference

Stamatis Manganiaris, ICCS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Users' Appreciation

Motivation - Background

The first period of coexistence of conventional, connected - conventional and automated vehicles will be very important for the future of intelligent transport.

User centric design of transport

t Gradual and careful upgrade of the Road Infrastructure

to meet the expectations of users from the start

Inframix Targets

To prove the added value of Inframix 01 developments to the daily lives of people

To evaluate the users' acceptance of Inframix 02 developments

Evaluation Methodology

- 2 demonstration events (Girona, Graz)
- 2 workshops (Barcelona, Graz)
- Up to 11 Research Questions
- 3 scenarios

INFRAMIX

- o Dynamic Lane Assignment
- \circ Roadworks
- o Bottlenecks (on-ramps, lane drops, tunnels etc.)
- Digital questionnaires, paper questionnaires, videos, passengers' experience in demonstrations

Evaluation Methodology Research categories

3 Users' Appreciation Factors

Users' appreciation factor	Research question	s1_UC1	\$1_UC2	s1_UC3	s2_UC1	\$2_UC2	s3_UC1	s3_uc2	\$3_UC3
Behaviour change	RQ1.1 Behaviour change	×	х	Х	х	х	х	х	х
Willingness to use	Willingness to use RQ2.1 Willingness to use		х	х	х	х	х	х	х
Perceived usability	RQ3.1 Traffic management	×		Х			х	х	х
reiceived usability	RQ3.2 Learnability	х	х	х	х	х	х	х	х
	RQ3.3 Intuitiveness		х	х	х	х	х	х	x
RG3.4 Understandability		х	х	х	х	х	х	х	x
	RQ3.5 Timing and number of signs	x	x	х	x	х			
	RQ3.6 Correct information	×	х	х	х	х	х	х	×
	RQ3.7 No distraction		х	х	х	х	x	х	×
	RQ3.8 Immediate Reaction	х	x	х	x	х	х	х	x
	RQ3.9 Potential benefit	Х	Х	Х	Х	Х	х	х	х

26/5/2020

Evaluation Methodology

• Expected impacts

INFRAMIX

- o On drivers, passengers, transport operators and traffic conditions
- o On traffic efficiency, safety
- Top 2 box + Bottom 2 box methodology was followed:
 - The top 2 box score is the sum of percentages for the top two highest points on satisfaction appreciation or awareness.
 - The bottom 2 box score is the sum of percentages for the top two lowest points on satisfaction, appreciation or awareness.

Participants per event

- Spanish workshop (Barcelona), 40 people
- Spanish demonstration (Girona)
 - o Scenario 1 28
 - o Scenario 2 20
 - o Scenario 3 21
- Austrian workshop (Graz), 40 people
- Austrian demonstration (Graz), 20 people
- Indicative percentage of women participants
 - Girona demonstration Graz workshop

INFRAMIX

Results

Willingness to use

Do users state that are willing to use the information provided by the Intelligent Transport System?

In general is increased with the real in daily life experience (not existing nowadays in ITS.

26/5/2020

Perceived usability

Do users perceive the ITS functionalities as useful?

Although many innovations were seen by their inventors as useful the intended users never welcomed them. **Usability** is a pre-condition for approval.

26/5/2020

Behaviour Change

Do users state that they would consider following the suggestions provided by the ITS?

A step forward in comparison with willingness to use because it is related to the change of driving process, actions habits and style.

26/5/2020

Ν	FF	RA	\sim	۱Ľ	X	

(2) M(2)	BN	1	RV	V	DL	4
(SP-WS)	Mean	STD	Mean	STD	Mean	STD
Willingness to use (scale used 1-5)						
Use information	4.23	0.71	4.43	0.59	4.23	0.58
Behavior change (scale used 1-5)						
Follow suggestions	4.28	0.64	4.50	0.55	4.25	0.54
Perceived usability (scale used 1-5)						
Easy to learn signs	4.13	0.83	4.41	0.72	4.26	0.64
Usefulness	4.10	0.74	4.28	0.60	3.93	0.94
Immediate reaction	4.13	0.85	4.25	0.71	4.05	0.81
Benefit	3.92	0.86	3.86	0.71	3.67	0.81
Intuitive signs	3.90	1.05	4.26	0.88	3.72	0.94
Understandable signs	3.92	1.09	4.38	0.81	3.95	0.86
Expected Impacts Results (scale used 0-10)						
Easier/intuitive interactions (DRIVERS)	7.21	1.64	7.13	1.79	6.88	1.73
Miss road sign in the in-vehicle HMI (DRIVERS)	6.89	1.71	6.90	1.67	6.42	2.00
Stress reduction (DRIVERS)	6.64	2.02	7.00	1.87	6.50	1.99
Increase comfort (DRIVERS)	6.82	1.89	6.79	1.82	6.65	1.79
Better perform daily work (TRANSPORT OPERATORS)	7.59	1.50	7.61	1.15	7.68	1.51
New incident detection ways (TRANSPORT OPERATORS)	7.15	1.65	7.46	1.39	7.28	1.82
New incident reaction ways (TRANSPORT OPERATORS)	7.87	1.34	7.77	1.22	7.90	1.37
Solve problems faster (TRANSPORT OPERATORS)	7.69	1.49	7.56	1.31	7.85	1.18
Stress reduction (TRANSPORT OPERATORS)	6.92	1.95	7.08	1.64	6.82	2.06
Expected Impacts Results (scale used 1-5)						
Traffic safety	3.95	0.99	4.40	0.63	3.93	0.62
Traffic flow/throughput	4.25	0.87	4.10	0.67	3.83	0.78
CO2 emissions	3.80	0.91	3.60	0.71	3.40	0.74

INFRAMIX

(SP-DM)	BN	1	R	W	DL	4
(31-DM)	Mean	STD	Mean	STD	Mean	STD
Willingness to use (scale used 1-5)						
Use information	4.05	0.92	3.50	1.54	4.18	0.67
Behavior change (scale used 1-5)						
Follow suggestions	4.10	0.83	3.70	1.30	4.11	0.74
Perceived usability (scale used 1-5)					1	
Usefulness	4.19	1.03	3.80	1.28	4.25	0.75
Satisfying	3.62	0.92	3.70	1.38	3.86	0.65
Immediate reaction	3.62	1.12	3.70	1.38	4.11	0.50
Benefit	3.95	1.02	4.00	1.08	3.75	0.84
Easy to learn signs	4.19	0.60	4.15	1.14	4.29	0.60
Understandable signs	4.19	0.60	4.20	1.15	4.11	0.79
Correct Information		0.70	4.35	0.93	4.14	0.93
Not distracting from driving	3.38	0.97	4.10	0.79	4.04	0.64
Easier/intuitive interactions (DRIVERS)	6.62	2.13	6.10	2.55	6.89	1.77
Miss road sign in the in-vehicle HMI (DRIVERS)	7.43	2.29	7.35	2.25	7.46	1.75
Stress reduction (DRIVERS)		2.16	6.50	2.86	6.93	2.14
Increase comfort (DRIVERS)	7.71	1.82	6.95	2.48	7.39	1.62
Better perform daily work (TRANSPORT OPERATORS)	8.38	1.60	7.35	2.39	7.79	1.52
New incident detection ways (TRANSPORT OPERATORS)	7.81	2.80	6.70	3.23	7.46	2.17
New incident reaction ways (TRANSPORT OPERATORS)	7.76	2.28	7.55	2.50	7.18	2.11
Solve problems faster (TRANSPORT OPERATORS)	8.52	1.29	7.20	2.57	7.43	2.03
Traffic safety		0.80	4.25	0.91	3.96	0.69
Traffic flow/throughput	4.24	0.62	3.95	0.94	4.11	0.69
CO2 emmissions	4.14	0.96	3.50	0.95	3.71	0.81

I	Ν	FR	A	M	IX	

	BN		RV	V	DL	Α
(AU-WS)	Mean	STD	Mean	STD	Mean	STD
Willingness to use (scale used 1-5)						
Use information	4.38	0.70	4.55	0.64	4.38	0.70
Behavior change (scale used 1-5)						
Follow suggestions	4.30	0.76	4.33	0.66	4.18	0.71
Perceived usability (scale used 1-5)						
Easy to learn signs	4.45	0.64	4.75	0.44	4.30	0.69
Usefulness	4.23	0.73	4.40	0.67	3.88	0.85
Satisfying	4.15	0.83	4.73	0.51	4.03	0.83
Immediate reaction	4.15	0.74	4.43	0.64	3.85	0.86
Benefit	4.18	0.71	4.50	0.64	3.98	0.89
Understandable signs	4.28	0.75	4.70	0.56	3.80	1.07
Expected Impacts Results (scale used 0-10)					-	
Easier/intuitive interactions (DRIVERS)	7.65	1.82	6.48	2.70	7.00	2.16
Miss road sign in the in-vehicle HMI (DRIVERS)	7.35	1.73	6.78	2.50	7.00	2.16
Stress reduction (DRIVERS)	7.58	1.34	6.53	2.44	6.43	2.69
Increase comfort (DRIVERS)	7.60	1.10	6.63	2.34	6.75	2.95
Better perform daily work (TRANSPORT OPERATORS)	7.53	1.62	7.60	1.91	7.38	1.88
New incident reaction ways (TRANSPORT OPERATORS)	7.40	1.63	7.68	1.86	7.70	2.16
Solve problems faster (TRANSPORT OPERATORS)	7.44	1.85	7.73	1.78	7.48	2.12
Expected Impacts Results (scale used 1-5)						
Traffic safety	4.28	0.74	4.40	0.63	3.80	0.79
Traffic flow/throughput	4.32	0.63	4.20	0.61	3.63	1.08
CO2 emissions	4.00	0.76	3.78	0.83	3.58	0.87

INFRAMIX

(AU-DM)	BN	1	RV	V	DL	4
	Mean	STD	Mean	STD	Mean	STD
Willingness to use (scale used 1-5)						
Use information	4.50	0.61	4.65	0.49	4.50	0.69
Behavior change (scale used 1-5)						
Follow suggestions	4.40	0.60	4.45	0.60	4.30	0.57
Perceived usability (scale used 1-5)						
Easy to learn signs	4.05	0.76	4.55	0.51	4.40	0.88
Usefulness	4.40	0.68	4.55	0.60	4.30	0.86
Satisfying	4.35	0.59	4.15	0.59	4.00	0.73
Immediate reaction	4.25	0.55	4.40	0.50	4.30	0.66
Benefit	4.20	0.77	4.15	0.37	4.10	0.55
Intuitive signs	4.05	0.51	4.40	0.68	4.35	1.04
Understandable signs	3.95	1.05	4.50	0.83	4.25	0.85
Available in time	4.10	0.55	4.15	0.59	4.00	0.46
Enough per distance	3.95	0.69	4.15	0.75	4.00	0.73
Correct information	3.95	0.51	4.05	0.51	4.00	0.56
Not distracting from driving	4.05	0.60	4.05	0.69	3.95	0.69
xpected Impacts Results (scale used 0-10)						
Easier/intuitive interactions (DRIVERS)	7.30	1.95	7.20	2.55	6.75	2.57
Stress reduction (DRIVERS)	7.85	1.42	7.65	1.69	7.30	2.64
Increase comfort (DRIVERS)	7.60	1.47	7.45	1.57	7.20	1.91
Better perform daily work (TRANSPORT OPERATORS)	7.95	1.85	8.30	1.26	7.95	1.90
New incident reaction ways (TRANSPORT OPERATORS)	7.35	3.05	7.90	2.17	8.10	2.27
Solve problems faster (TRANSPORT OPERATORS)	8.35	1.39	8.35	1.81	7.80	2.50
xpected Impacts Results (scale used 1-5)						
Traffic safety	4.35	0.93	4.60	0.60	4.30	0.73
Traffic flow/throughput	4.40	0.88	4.40	0.68	4.05	1.00
CO2 emissions	3.70	1.03	3.45	0.76	3.65	0.81

Conclusions

INFRAMIX

- Willingness to use/perceived usability/behaviour change: Acceptanceover 70%.
- Drivers, passengers and road operators believe that the advanced ITS functionalities will bring positive changes in traffic conditions (safety and efficiency) but they are unsure about the specific characteristics of this improvement.
- **Promising/optimistic** results but a **gradual** upgrade of intelligent systems infrastructure is **required**.

Thank you for your attention!

Stamatis Manganiaris

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

INFRAMIX online final event

Roadmap towards fully automated transport systems

Annarita Leserri / Enide

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

Summary

- Challenge
- Solutions
- Guidelines
- Timeline

INFRAMIX challenge

We identified some challenges related to highway infrastructure management and developed them as scenarios.

Dynamic lane assignment to automated driving

Roadworks zone

26/5/2020

INFRAMIX solutions and outcomes

26/5/2020

INFRAMIX

How can we meet stakeholders' needs with our solutions?

INFRAMIX solutions meeting stakeholders' needs

	Industry	Infrastructure operators	Policy makers	Researchers and key influencers	General public
Traffic management measures	Х	Х	Х	Х	
Bidirectional communication V2I and I2V	Х	Х		Х	Х
Digital infrastructure	Х	Х		Х	Х
Physical infrastructure	Х	Х		Х	Х
Infrastructure classification scheme		X	Х	Х	
Safety performance criteria	Х	Х	Х	Х	
Use cases and business models		X		Х	
Roadmap towards connected infrastructure	Х	Х	Х	Х	Х

26/5/2020

INFRAMIX Roadmap Guidelines

INFRAMIX

Stakeholder	Action needed
Industry	 Creation of new products; Improvement of existing products; Provision of services towards automated driving as a service; Business relationships with third parties; External promotion; etc.
Infrastructure operators	 Future testing and demonstration; Provision of new services; Strategic decisions and investments; Business relationships with third parties; External promotion; etc.
Policy makers	 Develop awareness; Evidence-based policies and regulations; Strategic investments; Etc.
Researchers and key influencers	 Exploitation of algorithms, control strategies, methodologies for technical evaluation, new visual signs, ISAD; Publication of scientific papers; Generation of data; Further research; External promotion; etc.
General public	 Develop awareness; Users' experience feedback; Etc.

We identified several actions needed from stakeholders. INFRAMIX partners are expected to perform a leading role in implementing these actions among relevant actors.

Guidelines for stakeholder engagement

26/5/2020

INFRAMIX Roadmap Timeline

Adoption										
Integration										
Standardisation										
Policy making										
Test										
Demonstration										
Deployment										
Awareness of solutions							-		-	
Coordination										
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10

Timeline of activities per year of implementation

Activities required in the years to come will involve all stakeholders whose expertise could advance the implementation of INFRAMIX solutions. These activities will be implemented at least in the ten years following the end of the project in May 2020.

444000

INFRAMIX

Recap

- Challenge: 3 traffic scenarios
- 9 solutions meeting stakeholders' needs
- Guidelines for all involved stakeholders
- Timeline of implementation

Thank you for your attention

Annarita Leserri annarita.leserri@enide.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

INFRAMIX online final conference

Road operators' and service providers' view on INFRAMIX measures

Yannick Wimmer / ASFINAG Marko Rosenmüller / TomTom

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

ISAD Classes INFRAMIX

	ISAD	Name	lame Infrastructure side		Digital map with road signs	VMS warnings, ncidents, weather opposite	Microscopic behived u	Guidance: speed, A gap, lane advice
Conventional	E	Conventional infrastructure / no AV support		Road geometry and road signs have to be recognized by AVs on their own		.=		
infrastructure	D	Static digital information / map support	Digital map data (including static road signs) complemented by physical reference points	Traffic lights, short-term road works and VMS have to be recognized by AVs on their own				
	С	Dynamic digital information	All static and dynamic information can be provided to the AVs in digital form	AVs perceive infrastructure support data				
Digital infrastructure	В	Cooperative perception	Infrastructure is capable of perceiving microscopic traffic situations	AVs perceive infrastructure support data in real time (C-ITS Day 1)				
	A	Cooperative driving	Infrastructure is capable of perceiving vehicle trajectories and guide single AVs (or AV groups)	AVs are guided by the infrastructure in order to optimise traffic flow (C-ITS Day 2+)				

The infrastructure classification scheme can facilitate the transition period to higher levels of automation, indicate modularity and scalability in functionalities and services, help to ensure safety and security, and handle different system lifecycle integrations.

The classification helps to understand the capabilities of the infrastructure.

ISAD classes may be difficult to determine when not all definition prerequisites are met. Definitions may be difficult to interpret and to apply. Further detailing is necessary for OEM use (i.e. in describing individual characteristics as opposed to a one-dimensional ranking).

26/5/2020

Safety

INFRAMIX

26/5/2020

40% 45% 40% 35% 35% 30% 30% 25% 25% 20% 2012 20% 15% 2013 15% 10% 2014 10% whole ASF network 5% 2015 5% Roadwork zones 2016 2017 2018

Potential of INFRAMIX message set is much broader than the 3 scenarios:

- more than 40% of the accidents are "rear end collisions", 18% are rear end collisions onto a stationary vehicle.
- ~75% of accidents are related to inattentiveness/distraction, insufficient safe distance and inadequate choice of speed.
- Roadwork zones are slightly more dangerous.

RWZ are on average more dangerous

- Rear end collision in more than 50%
- 5-10% of roadwork warning trailers are involved in such a collision every year in Austria
- -> C-ITS Roadworks Warning (C-ITS DENM)

26/5/2020

HD Maps and Vehicle Horizon

- Dynamic information such as roadworks especially important for OEMs such as BMW for AD
- In INFRAMIX, lane trace sent over ITS-G5
- In the future, dynamic information at lanelevel integrated into TomTom HD maps

 Dynamic data to be exposed via vehicle horizon, e.g., using ADASISv3

Advice for Human Drivers

INFRAMIX

- Lane visualization required to provide lane-specific advice
 - Dedicated lane advice can be shown to human drivers if lane-level guidance is available
- Cognitive load for human drivers increases
 significantly
 - Additional information for each lane creates too high load
 - Special visualization needed to overcome issue, e.g., for lane change advice
- Some types of advice, such as time gap, can only be handled with assistance, such as ACC

26	15	100	າວບ
Z0/	\mathbf{J}		JZU

Driving Recommendations/Commands

INFRAMIX

Speed limit90+++Works fine (cars need to have ACC feature)YesDistance gapImage: Image: Image	Control Message	Safety	Efficiency	Remarks	Recommended
Distance gap Image	Speed limit	• ++	+	Works fine	Yes
Lane change ? + Rather "keep to lane" advice instead No Dedicated lane ? -	Distance gap	0	++		Yes
Dedicated lane Image: Constraint of the second seco	Acceleration	- 'م	Ο	Very little additional effect	No
	Lane change	Ś	+	Rather "keep to lane" advice instead	No
Roadworks ++ + High safety potential Yes	Dedicated lane	-	 (+ for AVs)		No
	Roadworks	++	+	High safety potential	Yes

26/5/2020

INFRAMIX final online conference

-> will lead to considerable deterioration.

INFRAMIX pointed out possible new control strategies to counteract these effects.

C-ITS is a major factor in those strategies.

Traffic control strategies do also work with a rather "sparse" RSU coverage.

Poll

INFRAMIX final online conference

Roadmap for Spain

- Abertis Autopistas is committed to continue exploring the results obtained by INFRAMIX. Currently, it participates in national and European initiatives extending the bases proposed by the project; either with more use cases, such as cross-border traffic strategies, or testing different communication technologies, such as 5G.
- Abertis Autopistas does not take a position on a specific communication technology and works with several ones, studying technical aspects and the future role of the road operator, and pending for a national or European regulatory change.

INFRAMIX

C-Roads Pilot Austria Services

Free download

Day 1 according to C-Roads Catalogue

Day 2 according to ECo-AT extended Release 4.0

Use Cases C-ITS for Automated Driving
UC01: SAE level clearance for automated vehicles
UC02: Platoon support information for automated vehicles
UC03: Situation based distance gap for automated vehicles
UC04: Vehicle type and lane specific speed limit for automated vehicles
UC05: Vehicle type and lane specific speed recommendation for automated vehicles
UC06: Contextual emergency corridor information
UC07: Collective perception of objects on the road
UC08: Information about ITS-G5 equipped objects and persons on the road
UC09: Traffic situation awareness based on CAM
UC10: Long term road works warning
UC11: GNSS correction data

ightarrow Running activities of harmonization and standardization of Day2 services

INFRAMIX final online conference

Demonstrators

15

Use Case 1: Dynamic Lane Assignment

Thank you for your attention!

Yannick Wimmer ASFINAG <u>Yannick.Wimmer@asfinag.at</u> ASFINAG

Marko Rosenmüller TomTom Marko.Rosenmueller@tomtom.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

ODD and the role of infrastructure support

INFRAMIX Final Event, 26 May 2020

Tom Alkim Directorate-General for Research & Innovation

European Commission

HORIZON 2020

H2020 - Calls on "Automated Road Transport"

□ Budget: € 300 Mio (2014-2020)

G Focus

Large-scale demos of automated driving systems for passenger cars, trucks and urban transport

IIIIINFRAMIX

- > Safety and end user acceptance
- Road infrastructure to support automation
- Traffic management solutions
- Connectivity for automation
- Testing and validation procedures
- Assessment of impacts, benefits and costs of CAD systems
- Support for cooperation and networking activities
- Human centered design of AV

5 Calls for proposals

H2020 - Calls on "Automated Road Transport"

Gartner Hype Cycles 2009 - 2019

Gartner Hype Cycles 2009 - 2019

Figure 1. Hype Cycle for Emerging Technologies 2016

Gartner Hype Cycles 2009 - 2019

European Commission

Objectives

- develop an EU agenda for testing to better coordinate research, testing, piloting, and pre-deployment activities
- □ Agree on a common evaluation methodology in order to allow for comparison of results between tests
- □ facilitate access and exchange of data from testing
- assist the Commission in thematic areas, such as data access and exchange, road transport infrastructure, digital infrastructure, communication technology, cybersecurity, road safety, and legal frameworks, etc.
- provide advice on and support the generation of the work program for a future public private partnership on CCAM

Working Groups

- 1. Develop an EU agenda for testing
- 2. Coordination and cooperation of R&I and testing activities
 - Knowledge base
 - Common evaluation methodology
 - Framework for data exchange and lessons learned
- 3. Physical and digital road infrastructure
- 4. Road Safety
- 5. Connectivity and digital infrastructure for CCAM
- 6. Cybersecurity and access to in-vehicle data linked to CCAM

European leadership in safe and sustainable road transport through automation

European Commission

- Combining connectivity, cooperative systems and automation will enable automated and fully orchestrated manoeuvres, bringing us closer to Vision Zero.
- The goal is to create more user-centred, all-inclusive mobility, while increasing safety, reducing congestion and contributing to decarbonisation.
- CCAM will also enable the provision of **new mobility services for passengers and goods**, fostering benefits for users and for the mobility system as a whole.

CCAM Vision and Expected Impacts for Society

- The development of CCAM shall provide benefits to all citizens. With full integration of CCAM in the transport system, the expected positive impacts for society will be:
- **Safety**: Reducing the number of road fatalities and accidents caused by human error;
- **Environment**: Reducing transport emissions and congestion by optimising capacity, smoothening traffic flow and avoiding unnecessary trips;
- Inclusiveness: Ensuring inclusive mobility and goods access for all; and
- **Competitiveness**: Strengthen competitiveness of European industries by technological leadership, ensuring long-term growth and jobs.

CCAM – 7 clusters

ODD in the STRIA roadmap - theory

ODD in the STRIA roadmap - practice

STORYLINE ODD FRAMEWORK

Α

Driver leaves home to drive to work. First mile is driven manually.

В

... gives control to vehicle (ToC) and continues the trip in automated mode. Does something else with the freed up time, like reading email, posting on instagram or drinking coffee.

C1

During the trip vehicle encounters temporary lane markings, vehicle is confused and ODD ends. Driver needs to take over control (ToC). D1

Conditions back to normal, ODD is available again, driver gives back control (ToC).

C2

During the trip vehicle has to merge in heavy mixed traffic, vehicle can't handle the situation and ODD ends. Driver needs to take over control (ToC).

D2

Conditions back to normal, ODD is available again, driver gives back control (ToC).

C3

During the trip a heavy rain shower occurs, vehicle can't handle the situation and ODD ends. Driver needs to take over control (ToC). D3

Conditions back to normal, ODD is available again, driver gives back control (ToC).

E

Vehicle approaches the exit and driver prepares to take back control (ToC) and drives last mile manually to destination.

Figure 4: Visual representation of ODD in practice

ODD and **ISAD**

STORYLINE ODD FRAMEWORK

Α

Driver leaves home to drive to work. First mile is driven manually.

В

... gives control to vehicle (ToC) and continues the trip in automated mode. Does something else with the freed up time, like reading email, posting on instagram or drinking coffee.

C1

During the trip vehicle encounters temporary lane markings, vehicle is confused and ODD ends. Driver needs to take over control (ToC). D1 Conditions back to normal, ODD is available again, driver gives back control (ToC).

C2

During the trip vehicle has to merge in heavy mixed traffic, vehicle can't handle the situation and ODD ends. Driver needs to take over control (ToC).

D2

Conditions back to normal, ODD is available again, driver gives back control (ToC).

C3

During the trip a heavy rain shower occurs, vehicle can't handle the situation and ODD ends. Driver needs to take overcontrol (ToC).

Conditions back to normal, ODD is available again, driver gives back control (ToC).

E

Vehicle approaches the exit and driver prepares to take back control (ToC) and drives last mile manually to destination.

ISAD levels

				Digits	é mformati	ou browde	q pp yyr
	Level	Name	Description	rtiw qam latigid angle bion sitiste	VMS, warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, Guidance: speed,
Digital Infrastructure B	A	Cooperative driving	Bated on the rule taxe internation on writton interements, he whethous is what to guide Ava (groups of verticitie or angle vehicles) in order to optimize the oversit both form.	X	х	x	X
	В	Cooperative perception	Inhastructure is capable of perceiving microscopic traffic situations and providing this data to AVs in real-time.	X	Х	Х	
С		Dynamic digital information	All dynamic and static infrastructure information is available in digital form and can be provided to AVs	Х	Х		
Conventional	D	Static digital information / Map support	Digital may data a available with static rulet agrits. May data could be complemented by physical reference points (landmarks signs). Traffic lights, short term road works and VPS need to be recognised by AVs	х	_	_	_
	E	Conventional infrastructure / no AV support	Conventional infrastructure without digital information. Avs need to recognise road geometry and road signs		_		_

Figure 4: Visual representation of ODD in practice

Thank you for your attention!

INFRAMIX Conclusions

Martin Russ / AustriaTech

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

INFRAMIX in a Nutshell

26/5/2020

INFRAMIX final online conference

2

INFRAMIX key achievements

- Focus on **3 motorway scenarios** (bottlenecks, workzone, lane assignment)
- Infrastructure improves efficiency and safety in mixed traffic environments
 - New traffic control strategies
 - New evaluation toolset (microcopic, <u>sub-microscopic</u>, <u>hybrid</u> combination of simulation and real world)

New Infrastructure elements tested

- new (C-)ITS messages,
- link between TMCs and TSPs,
- new physical signs
- Infrastructure support (ISAD) classes have been defined
- roadmap for the next 10 years ahead....

INFRAMIX

The future Role of Infrastructure

- INFRAMIX
 - **INFRAMIX** = one of many infrastructure related projects dealing with "**automation** readiness"
 - Key platforms working on future infra perspectives CEDR, ERTRAC, IRF/ERF, ASECAP, EU-EIP, ITF/OECD, Trilateral WG EU-US-JAP, CCAM Platform ...on topics like:
 - Physical and <u>digital elements</u>
 - <u>Data quality</u>
 - HD maps & location referencing
 - Specific <u>scenarios</u>: workzones, merging, handovers,...
 - <u>Cooperative</u> driving & <u>Communication</u> infrastructures
 - Legal requirements and digital road codes
 - A future <u>"systems approach</u>" defining roles of users, vehicles and infrastructure
 - New mobility services (fleet operations) and new infra functionalities

•

\rightarrow Infrastructure as a key question and domain for future research initiatives!!!

26/5/2020

Next steps

INFRAMIX

26/5/2020

1111111

- More **Flexibility** different situations lead to different requirements (link to ODDs)
 - Road type, traffic volumes, scenarios as work zone, bottleneck or transition area
 - Which (minimum) elements are needed to obtain the desired results?
 - Which data are needed (maps, positioning, ...), redundancy of elements/sensors
- Wider perspective on impacts & evidence
 - "Co-benefits", e.g. Environmental, service-orientation, network effects
 - Combine with other measures to maximize the benefits of infrastructure support
 - Evaluate related costs & benefits

Integrate legal framework

- Are legal changes needed to roll out measures?
- Mandatory information/advice?
- Quality & trust
- User perspective: further feedback on user experience does guidance work?
- COLLABORATION (OEMs & Service Providers) & "vehicle integration"
- → Start implementing "no regret measures" (along a common Vision & Strategy)

...driving style

26/5/2020

INFRAMIX final online conference 6

Martin Russ

austriatech

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.