

INFRAMIX Press-Conference


Martin Russ / AustriaTech

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

INFRAMIX in a Nutshell

26/5/2020

INFRAMIX final online conference

2

INFRAMIX key achievements

- Focus on **3 motorway scenarios** (bottlenecks, workzone, lane assignment)
- Infrastructure improves efficiency and safety in mixed traffic environments
 - New traffic control strategies
 - New evaluation toolset (microcopic, <u>sub-microscopic</u>, <u>hybrid</u> combination of simulation and real world)

New Infrastructure elements tested

- new (C-)ITS messages,
- link between TMCs and TSPs,
- new physical signs
- Infrastructure support (ISAD) classes have been defined
- roadmap for the next 10 years ahead....

INFRAMIX

The future Role of Infrastructure

- INFRAMIX
 - **INFRAMIX** = one of many infrastructure related projects dealing with "**automation** readiness"
 - Key platforms working on future infra perspectives CEDR, ERTRAC, IRF/ERF, ASECAP, EU-EIP, ITF/OECD, Trilateral WG EU-US-JAP, CCAM Platform ...on topics like:
 - Physical and <u>digital elements</u>
 - <u>Data quality</u>
 - HD maps & location referencing
 - Specific <u>scenarios</u>: workzones, merging, handovers,...
 - <u>Cooperative</u> driving & <u>Communication</u> infrastructures
 - Legal requirements and digital road codes
 - A future <u>"systems approach</u>" defining roles of users, vehicles and infrastructure
 - New mobility services (fleet operations) and new infra functionalities

•

\rightarrow Infrastructure as a key question and domain for future research initiatives!!!

26/5/2020

Next steps

INFRAMIX

144000

- More Flexibility different situations lead to different requirements
 - "practical" link to ODDs Operational Design Domains
 - Which (minimum) elements could be combined to obtain the desired functionalities?
 - Data needs (maps, positioning, ...) & redundancy of elements/sensors
- Wider perspective on impacts & evidence
 - "Co-benefits", e.g. Environmental, service-orientation, network effects
 - Evaluate related costs & benefits
- Integrate legal framework
 - Mandatory information/advice?
 - Quality & trust
- User perspective: further feedback on user experience does guidance work?
- COLLABORATION (OEMs & Service Providers) & "vehicle integration"
- → Start implementing "no regret measures" (along a common Vision & Strategy)

Martin Russ

austriatech

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

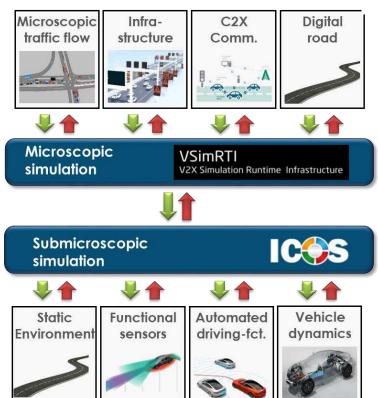
INFRAMIX Press conference

Dr. Panagiotis Lytrivis / ICCS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

• INFRAMIX implemented significant innovations in the area or road infrastructure and how this infrastructure can support the gradual insertion of automated vehicles in existing traffic.

- The introduction of **AVs** is expected to **disrupt** existing traffic so it is important at the beginning of the transition period to focus on **maintaining at least** conventional traffic's **safety** and **efficiency**.
- In the longer term the target is to enhance safety, traffic efficiency and comfort.



27/5/2020

INFRAMIX - Press conference

Communication, road signs, simulation

- The project implemented the latest C-ITS **communication** standards, working closely with **standardization** working groups.
- The project surveyed the road signs to see if they cover the needs of the coexistence of conventional and automated vehicles and proposed a new traffic sign for indicating the lane dedicated to automated vehicles (AVs).
- Advanced **simulation** tools were implemented:
 - A co-simulation environment coupling microscopic with sub-microscopic simulation
 - Hybrid testing: use of a real autonomous vehicle coupled with virtual mixedtraffic, giving us the opportunity to emulate critical virtual traffic situations in a safe testing environment with the real hardware

27/5/2020

INFRAMIX - Press conference

- **Speed recommendations** had positive impact in terms of safety
- Time gap adaptions showed in some scenarios even up to 50% enhancement in traffic efficiency
- The lane change recommendations usually led to under-utilization of road capacity and created riskier traffic situations
- Variable speed limit could **dissolve congestion at bottlenecks** and increase traffic efficiency in average by up to 14%, even with low penetration rate of connected and automated vehicles

Employing connected & automated vehicles will **gradually** result in **less infrastructure** equipment (VMS, spot sensors) leading also to **less costs** (incl. maintenance)

27/5/2020

Infrastructure classification scheme (ISAD)

support and guide road operators and authorities to target investments to support higher levels of AVs especially for mixed traffic in the transition period

				Digital information provided to AVs			
	Level	Name	Description	Digital map with static road signs	VMS, warnings, incidents, weather	Microscopic traffic situation	Guidance: speed, gap, lane advice
tional cture	E	Conventional infrastructure / no AV support	Conventional infrastructure without digital information. AVs need to recognise road geometry and road signs.				
Conventional infrastructure	D	Static digital information / Map support	Digital map data is available with static road signs. Map data could be complemented by physical reference points (landmarks signs). Traffic lights, short term road works and VMS need to be recognized by AVs.	x			
Φ	С	Dynamic digital information	All dynamic and static infrastructure information is available in digital form and can be provided to AVs.	х	х		
Digital infrastructure	В	Cooperative perception	Infrastructure is capable of perceiving microscopic traffic situations and providing this data to AVs in real-time.	х	х	х	
I infra	А	Cooperative driving	Based on the real-time information on vehicle movements, the infrastructure is able to guide AVs (groups of vehicles or single vehicles) in order to optimize the overall traffic flow.	х	х	x	х

27/5/2020

Users' appreciation

- Approximately 170 participants from ITS stakeholders participated in relevant workshops and demonstrations.
- The majority of the participants believe that INFRAMIX developments will **bring positive changes** in traffic conditions (**safety** and **efficiency**) but they are unsure about the specific characteristics of this improvement.

Behavior change Willingness to use Perceived usability

INFRAMIX

Thank you for your attention!

Dr. Panagiotis Lytrivis Senior Researcher, ICCS panagiotis.lytrivis@iccs.gr

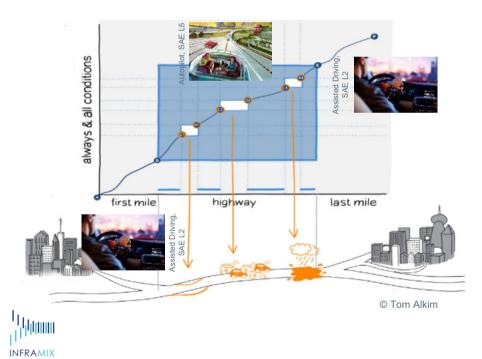
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723016.

INFRAMIX A Road Operator's Perspective

Bernd Datler INFRAMIX Press Conference May 27, 2020

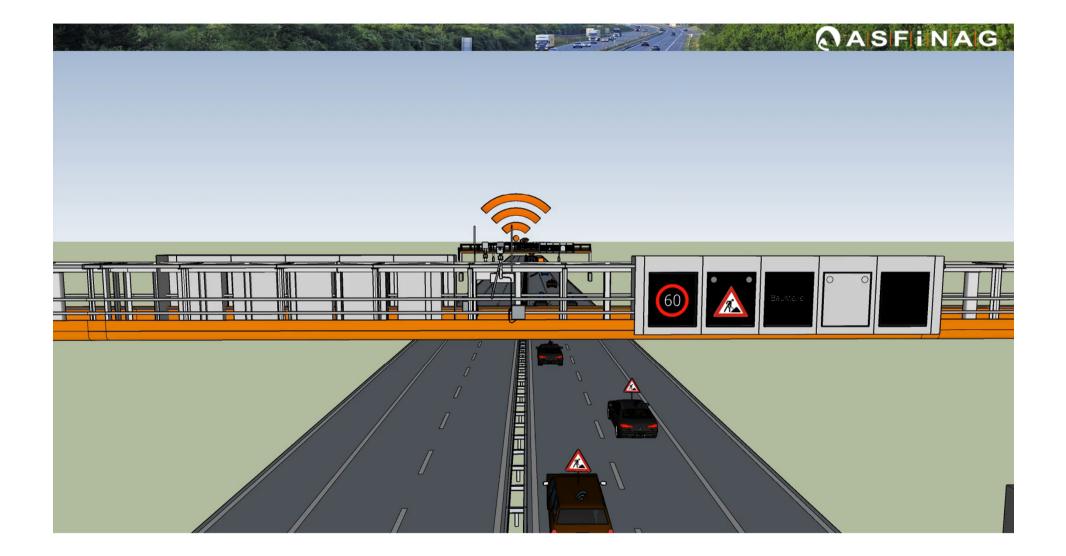
ASFINAG operates rural & urban highways with various traffic situations

< 20,000 vehicles/day



> 200,000 vehicles/day

Challenges to enable safe and reliable mixed traffic flow


Operational Design Domains for Automated Driving

Different traffic situations

As long as ODD is fullfilled \rightarrow AV can drive on its own

If ODD breaks down
→ Driver has to take over again -> potential negative effect on traffic flow

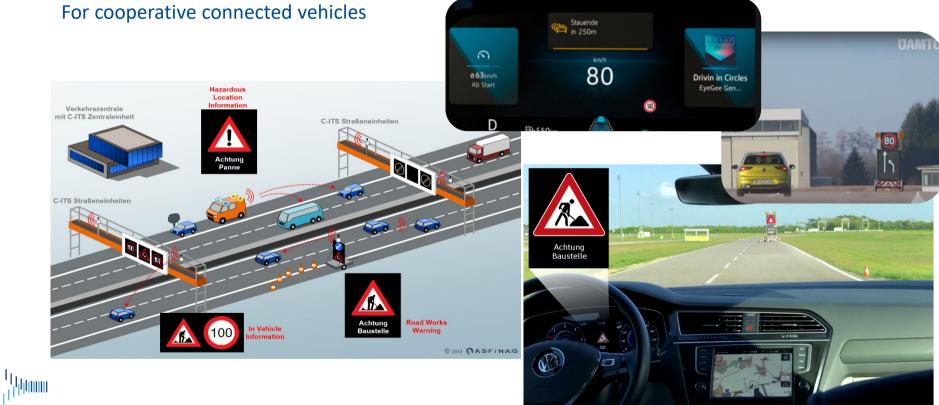
Number of ODD breakdowns (e.g. handovers) should be minimized

ASFINAG and INFRAMIX - Results

Communication tests

• INFRAMIX message set was demonstrated successfully Next generation C-ITS messages (C-ITS Day 2) tested successfully for the first time in Europe

Infrastructure Support for Automated Driving (ISAD) scheme was developed


Simulations

- INFRAMIX highlighted need for control strategies for higher penetration rates of AVs
- C-ITS is a key feature in these strategies

Also the safety aspect is addressed by C-ITS which shows great potential

Available traffic information services (C-ITS Day 1)

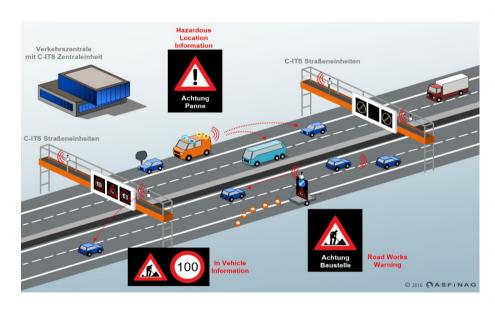
INFRAMIX

Sources: VW Newsroom & https://www.youtube.com/watch?v=z3hNO10mczU

ASFINA

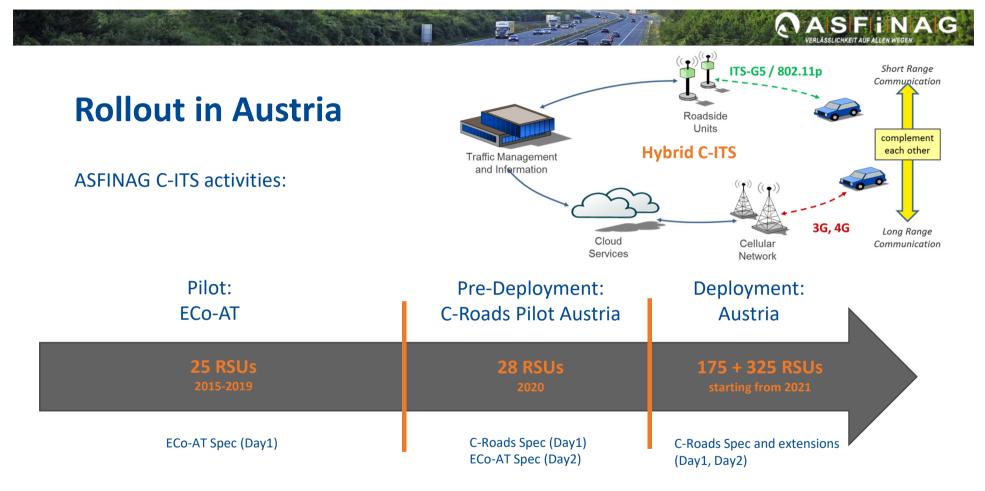
Ce

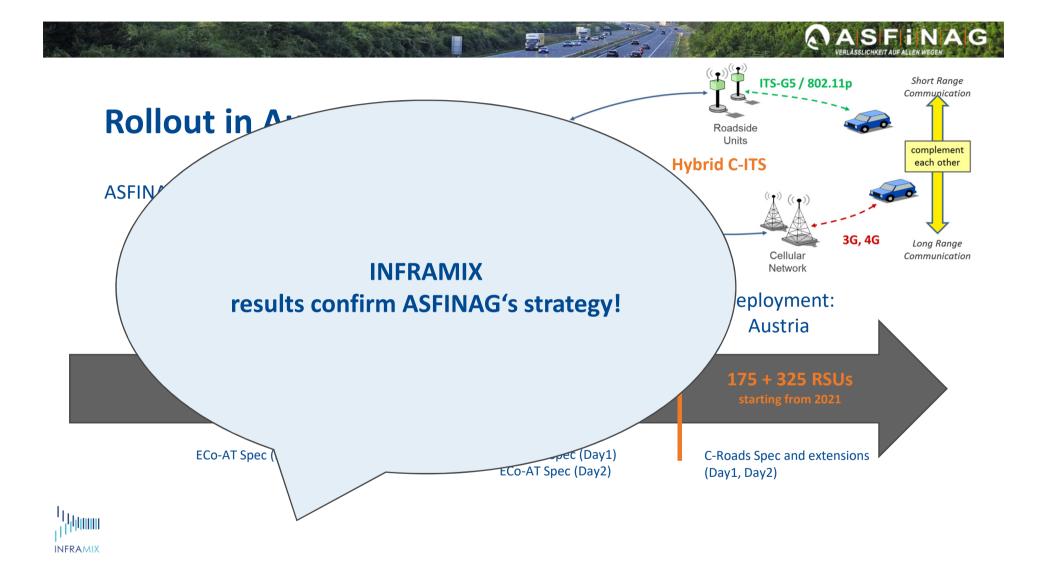
Ongoing tests with series vehicles in Europe

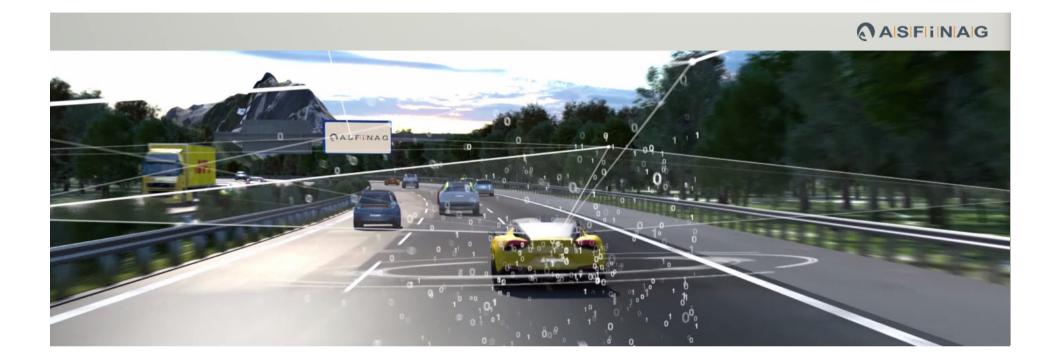


. INFRAMIX Source: https://www.youtube.com/watch?v=z3hNO10mczU

C-ITS Deployment in 2020


Day 1 according to C-Roads Catalogue


Day 2 according to ECo-AT extended Release 4.0*


	Free download						
Use Cases C-ITS for Automated Driving	回約提回						
UC01: SAE level clearance for automated vehicles							
UC02: Platoon support information for automated vehicles							
UC03: Situation based distance gap for automated vehicles							
UC04: Vehicle type and lane specific speed limit for automated vehicles							
UC05: Vehicle type and lane specific speed recommendation for automated vehicles							
UC06: Contextual emergency corridor information							
UC07: Collective perception of objects on the road							
UC08: Information about ITS-G5 equipped objects and persons on the road							
UC09: Traffic situation awareness based on CAM							
UC10: Long term road works warning							
UC11: GNSS correction data							
*Successful Day2 tests (ITS-G5) were performed in 2 (see https://www.inframix.eu/wp-content/uploads/D4.2_Demonstration-Phase-ar Public.pdf)							

Bernd Datler ASFINAG Maut Service GmbH Managing Director <u>bernd.datler@asfinag.at</u> www.asfinag.at